commodore Su per'pET computer
Waterloo microPascal

(xcommodore SuperPET computer
Mode! SPS000

r commodore

COMPUTER

Dieses Handbuch wurde gescannt, bearbeitet und ins PDF-Format konvertiert von
Riidiger Schuldes

schuldes@itsm.uni-stuttgart.de

(c) 2003

Waterloo microPascal

Tutorial and Reference Manual

F. D. Boswell
T. R. Grove

J. W. Welch

Copyright 1981, by the authors.

All rights reserved. No part of this publication may be reproduced or used in any
form or by any means - graphic, electronic, or mechanical, including photocopying,
recording, taping or information storage and retrieval systems - without written
permission of the authors.

Disclaimer

Waterloo Computing Systems Limited makes no representation or warranty with
respect to the adequacy of this documentation or the programs which it describes for
any particular purpose or with respect to its adequacy to produce any particular result.
In no event shall Waterloo Computing Systems Limited, its employees, its
contractors or the authors of this documentation be liable for special, direct, indirect
or consequential damages, losses, costs, charges, claims, demands, or claim for lost
profits, fees or expenses of any nature or kind.

Preface

Pascal was originally developed in the late 1960's by Niklaus Wirth at ETH in
Zurich Switzerland. In the 1970's it became a widely respected programming
language, particularly for the teaching of Computer Science.

This document provides a tutorial and a reference manual for the Pascal language.

The Tutorial is intended to provide a quick introduction to the language. The
serious user may wish to acquire one of the many Pascal textbooks available.

The Reference Manual is intended to be a concise definition of the language. It is
based on the draft proposals produced by the Pascal standardization effort. The
language is quite similar to what is described by Jensen and Wirth in Pascal User
Manual and Report, Second Edition (Springer-Verlag 1974).

All members of the Computer Systems Group have made a significant
contribution to the Waterloo microPascal interpreter. The design is based upon ideas
evolved and proven over the past decade in other compiler projects in which the group
has been involved. The actual design and programming of the processor was
primarily performed by F. D, Boswell and T. R. Grove. Sharon Malleck assisted in
the production of the manual.

This document was typeset in 10-point Times using the Waterloo SCRIPT text
formatter and a Mergenthaler VIP photo typesetter.

F. D. Boswell

T. R. Grove

J. W. Welch

University of Waterloo

Waterloo, Ontario, Canada, N2L 3G1
June 1981

iii

Introduction

Table of Contents

Language Supported
Enhancements and Features

Restrictions

Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8
Example 9
Example 10
Example 11
Example 12
Example 13
Example 14
Example 15
Example 16
Example 17
Example 18
Example 19
Example 20
Example 21
Example 22
Example 23
Example 24

A Quick Tutorial Introduction to Pascal .

A First Program .
Variables and Arithmetic .
Loops (the For Statement) .
More Loops (the While Statement) .
While vs For e e .
Column Titles . .
Variable-width Columns .
The Real Type .
More Real Numbers

Input from the Keyboard

Reading And Loops .

Procedures

Boolean Variables and If Statements .

A Loop Within a Loop

Output Formatting

Subranges of Integers
User-defined Types .

Arrays . .
Two-dimensional Arrays
User-defined Functions . . .
Character Variables .

Arrays of Strings .

Enumerated Types .
Set Types and the Case Statement .

Introduction to the Reference Manual

A. Syntax and Semantics Definition . .

A.1 Notation .

A.2 Basics

A.3 Programs and Blocks e e e e
A.4 Declarations and Scope

A41 Labels
A42 Constants

ST

Voo KL DWW

39

41
41
41

45
46
47

Table of Contents

A.4.3 Types . .

A.4.3.1 Simple Types

A.4.3.2 Arrays

A.4.3.3 Sets .

A.4.3.4 Files .

A.4.3.5 Pointers .

A.4.3.6 Records .

A.4.4 Variables . . .
A.4.5 Procedures and Functlons
A.4.5.1 Formal Parameters

A.5 Executable Statements .
A.5.1 Procedure Invocation and Parameters

A.5.2 Assignment Statement (Variables and Expressrons)

A.5.2.1 Variables

A.5.2.2 Expressions and Operators
A.5.2.3 Expression Factors
A.5.3 Control Statements
A.5.3.1 IF Statement
A.5.3.2 CASE Statement
A.5.3.3 WHILE Statement
A.5.3.4 REPEAT Statement
A.5.3.5 FOR Statement
A.5.3.6 WITH Statement
A.5.3.7 GOTO Statement .

B. Predefined Identifiers .

B.1 Predefined Labels

B.2 Predefined Constants

B.2.1 Maxint (Largest Integer)

B.3 Predefined Types

B.3.1 Integer .

B.3.2 Char

B.3.3 Boolean

B.3.4 Real

B.3.5 Text .

B.4 Predefined Vanables

B.4.1 Standard Input and Output Fxles

B.5 Predefined Procedures and Functions
B.5.1 Mathematical Functions

B.5.2 Dynamic Variable Creation Procedures
B.5.3 Real to Integer Conversion Functions .
B.5.4 Functions for Ordinal Types

vi

48
51
52
53
54
55
56
58
58
60
62
64

65
69
74
77
78
&1
82
83
84
87
88

89
89
89
89
90
90

91
91
92
93
93
93
93
94
95
95

Table of Contents

B.5.5 Miscellaneous Functions
B.5.6 Data Transfer Procedures
B.5.7 File Manipulation Procedures and Functxons

C. Reserved Words

D. Delimiters

E. Summary of Operators
F. Syntax Summary

G. Waterloo microPascal Users Guide
G.1 Introduction .
G.2 Run-time Error Detectxon in Waterloo rmcroPascal
G.3 Language Supported By Waterloo microPascal
G.4 Implementation Defined Attributes .
G.5 Implementation Dependent Attributes
G.6 File 1/0O Considerations
G.7 Character-set Extensions .
G.8 Miscellaneous Considerations
G.9 Restrictions . .
G.10 The Interactive Debugger
G.11 Peek and Poke .

vii

96
96
97

107

109

111

115

129
129
129
130
130
130
131
132
132
132
132
134

Waterloo Computing Systems Newsletter

The software described in this manual was implemented by Waterloo Computing
Systems Limited. From time-to-time enhancements to this system or completely new
systems will become available.

A newsletter is published periodically to inform users of recent developments in
Waterloo software. This publication is the most direct means of communicating
up-to-date information to the various user. Details regarding subscriptions to this
newsletter may be obtained by writing:

Waterloo Computing Systems Newsletter
Box 943,

Waterloo, Ontario, Canada

N2J 4C3

Introduction

Waterloo microPascal is an interpretive implementation of the Pascal language. It
is accompanied by Waterloo microEdit--a full-screen text editor. Waterloo microEdit
is used to create and maintain both program source files and data files. This manual
assumes familiarity with microEdit. A description of the editor may be found in a
separate manual.

This document consists of two sections: a tutorial introduction and a reference
manual. The tutorial introduction introduces the features of the Pascal language by a
series of simple examples accompanied by notes. The reference manual defines the
Pascal language and also explains specific features of Waterloo microPascal.

The remainder of this section is an overview of Waterloo microPascal.

Language Supported

There is no offical standard for the Pascal programming language. The Waterloo
microPascal implementation corresponds closely to Pascal User Manual and Report,
Second Edition (Springer-Verlag, 1974) and the interim draft standards being
produced by the international standardization effort.

Enhancements and Features

® An interactive debugger allows single-step operation, breakpoints and
interactive examination of variables at execution-time.

® Peck and poke procedures allow direct access to the user memory, including the
screen.

® Reset and rewrite allow the specification of an actual filename as their second
parameter.

® Lazy I/O is a feature permitting keyboard and screen 1/O to behave in an
intuitive way for interactive programs.

2 Introduction

Restrictions

e Sets may contain a maximum of 256 elements. The ordinal values of the
elements of the base type of the set must be in the range 0..255.

® Pack and unpack are unimplemented.
® Variant record semantics are not checked.

® Passing procedure or function names as parameters is not supported.

A Quick Tutorial Introduction to Pascal

EXAMPLE 1 A First Program

This program writes a message on the screen.

Notes:

(* this is our first Pascal example *)

program examplel(output);
begin
writeln('This is my first Pascal program’);
end.

The first line in the program is called a comment, and may be recognized by
the "(*" and "*)" characters. Comments have no effect whatsoever on the
execution of a program; they are used as documentation.

Pascal programs consist of three sections: the program heading, the
declarations, and the program body. The program heading gives a name to
the program, and says that the program will produce some output. This
program is too simple to have a declaration section (the next example will
have one). The program body consists of the keyword "begin”, followed by
some executable statements, followed by the keyword "end”, followed by a

period (“."). The executable statements are separated from each other by a
semi-colon (";").

The appearance of a Pascal program (spacing, indentation, blank lines etc.)
is immaterial to the execution of a program, but is very important from a
programming style point of view.

The "writeln” ("write a line”) statement here outputs a character string
constant. It will appear exactly as it appears in the program. A character
string consists of a sequence of characters enclosed in """ characters.

A Quick Tutorial Introduction to Pascal

EXAMPLE 2 Variables and Arithmetic

Our second example declares two integer variables, performs some simple arithmetic,
and outputs the results of that computation.

Notes:

program example2(output);
var
X, xsquared : integer;

begin
X:= 12;
xsquared := x * x;
writeln(x, xsquared);
end.

This program has a declaration section as follows:

var

X, xsquared : integer;
Two variables, named "x" and "xsquared”, are declared to be of type integer.
This means that the range of possible values that these variables may have is
restricted to the integers (..., -3, -2, -1, 0, 1, 2, 3, ...).

Variables names (or variable identifiers) start with a letter, but then may
consist of any number of letters and numbers.

The ":=" that appears in the program is the assignment operator. It says that
the variable on the left is assigned the value of the expression on the right.

e

"x*x" is an arithmetic expression, and is the multiplication operator.

Other arithmetic operators are:

+ addition

- subtraction

div integer division
mod integer remainder
/ real division

Arithmetic expressions are evaluated according to the usual rules of algebra.

A Quick Tutorial Introduction to Pascal 5

6. Variables must be assigned a value before they may be used in an
expression. Try removing the statement “x := 12;" from the program and
then re-running it.

EXAMPLE 3 Loops (the For Statement)
The computations from Example 2 are placed in a loop, producing a table of squares.

program example3(output);
var
X, xsquared : integer;

begin
forx := 12 to 21 do
begin
xsquared := x*x;
writeln(x, xsquared);

end;
end.

Notes:

1. A for statement is used to perform the looping.

2. A for statement may execute only one statement repeatedly (it is called the
object statement, or the for loop object).

3. Because we need to repeat two statements (the assignment and the writeln), a
compound statement is used. A compound statement is a sequence of
statements enclosed by a begin-end pair.

4 The “x := 12" in the for statement is just like an assignment statement; "x” is
referred to as the for statement index, and "12" is the initial value.

5. Each time the for repeats, the value 1 is added to the for index. This
continues until the index is equal to the final value ("21" in this example).

6. After the for statement is finished executing, the value of the for index is

undefined.

6 A Quick Tutorial Introduction to Pascal

EXAMPLE 4 More Loops (the While Statement)

Example 4 produces the same output as Example 3. A while statement is used instead
of a for statement.

program example4(output);
var
X, xsquared : integer;

begin
x:=12;
while(x <= 21)do
begin
xsquared := x*x;
writeln(x, xsquared);
X:=Xx+ 1;
end;
end.

Notes:

1. The while statement is another method by which looping may be done. Like
the for statement, a while statement repeats only a single statement, so a
compound statement is usually used.

2. The "x <= 21" is called a relational expression, and the "<=" ("less than or
equal to") is a relational operator. The value of a relational expression is
either true or false. True and false are called Boolean constants.

3. A while statement will repeat as long as the value of the relational expression
is true.

4. The statement "x := x + 1;” causes the value of variable x to increase by 1
each time through the loop. X is said to be incremented by 1.

5. Some other relational operators are:
<> not equal to
= equal to
> greater than
>= greater than or equal to
< less than

A Quick Tutorial Introduction to Pascal 7

EXAMPLE 5 While vs For

A table of the squares and cubes of even numbers from 12 to 21 is output with a title.

program example5(output);
var
X, xsquared, xcubed : integer;

begin
writeln('A table of squares and cubes:’);
X = 12;
while(x <= 21)do
begin
xsquared := x*x;
xcubed := x*x*x;
writeln(x, xsquared, xcubed);
X=X+ 2
end;
end.

Notes:

1. An immediate advantage of the while statement over the for statement may
be seen in the example. The problem requires us to increment x by 2 each
time through the loop. The for statement, however, will not allow this. With
a while statement we are free to choose any increment necessary.

2. The statement "xcubed := x*x*x;” could have been written as "xcubed :=

xsquared*x;".

8 A Quick Tutorial Introduction to Pascal

EXAMPLE 6 Column Titles

The output from this example is the same as Example 5, except that titles are output
above each column of numbers.

program example6(output);
var
X, xsquared, xcubed : integer;

begin
writeln('A table of squares and cubes:’);
writeln('X':7, 'X*%2'.7, 'X**3".7);
X = 12;
while(x <= 21)do
begin
xsquared := x*x;
xcubed := x*x*x;
writeln(x, xsquared, xcubed);

=X+ 2
end;
end.
Notes:
1. If you examine the output from Example 5, you will see that the numbers are
aligned in zones that are seven characters wide.
2. The new writeln statement outputs three character string constants: "X",

"X*%2" and "X**3". The ":7” to the right of each string is called a field width
modifier. It tells Pascal that the string is to be output in a seven-character
zone, right-justified with blanks on the left. This will cause the titles to
appear directly above their respective columns.

3. The next example will show an easy way to create columns of any width.

A Quick Tutorial Introduction to Pascal

EXAMPLE 7 Variable-width Columns

Once again, the output from this example is similar to that of Example 5. A
programming technique is introduced that allows the columns of output to be any

width.

Notes:

program example7(output);

const

width = 10;
var

X : integer;
begin

writeln(‘A table of squares and cubes:’);
writeln('X’:width, 'X**2":width, 'X**3’:width);
X 1= 12;
while(x <= 21)do

begin

writeln(x:width, x*x:width, x*x*x:width);
=x + 2;
end;
end.

A new kind of declaration, a constant declaration, appears in the program.
Wherever the constant identifier "width” appears in the program, the number
10 will be used instead.

The constant declarations must be located between the program heading and
the variable declarations.

All the relevant writeln statements use the constant as a field width modifier,
so that changing the column width is a simple matter of changing the
program in one place (the declaration of "width").

A variable could have been used instead of a constant (assuming that the
variable was assigned a value).

This program does not have variables for x-squared and x-cubed. Instead,
the values are calculated directly in the writeln statement. In general, Pascal
will allow any arithmetic expression in a writeln statement.

10 A Quick Tutorial Introduction to Pascal

EXAMPLE 8 The Real Type

The Pascal type real is introduced with a program that produces a table of square roots
from 1 to 15.

program example8(output);
var
x : integer;
rootofx : real;

begin
writeln('A table of square roots:’);
X:=1;
while(x <= 15)do
begin

rootofx := sqrt(x);
writeln(x, rootofx);

=Xx 4+ 1
end;
end.

Notes:

1. A new type, real, is used in the declaration of variable "rootofx”.

2. "sqrt” is a built-in function that calculates the square root of its parameter
(the value in parentheses), provided that the value of that parameter is not
negative.

3. The type of the parameter to "sqrt” may be integer or real, but the result is
always real.

4. There are many other built-in functions available in Pascal including sine

and cosine, for example.

A Quick Tutorial Introduction to Pascal

EXAMPLE 9 More Real Numbers

11

This example produces a table of sines and cosines for x ranging from pi/2 to pi

radians, in increments of 0.1 radians.

program example9(output);

const

width = 15;

pi = 3.1415926;
var

X, sineofx, cosineofx : real;

begin
writeln(‘A table of sines and cosines:’);
writeln('X’:width, 'Sin(x)’:width, 'Cos(x)":width);
1= pi/2;
while(x <= pi)do
begin
sineofx := sin(x);
cosineofx := cos(X);
writeln(x:width, sineofx:width, cosineofx:width);

x:=x+ 0.1;
end;
end.
Notes:
1. The value of "pi” is declared to be a real constant with the

3.1415926 .

value

of

12 A Quick Tutorial Introduction to Pascal

EXAMPLE 10 Input from the Keyboard

An integer number is read from the keyboard, and its square and square root are
output.

program examplel0(input, output);
var
X, xsquared : integer;
rootofx : real;

begin
writeln('Enter an integer:’);
readln(x);

rootofx := sqrt(x);

xsquared := x*x;

writeln(x, ‘xsquared =', xsquared,
s sqrt(’, X, ') =', rootofx);

end.

Notes:

1. The keyword input in the program heading indicates that the program will be
reading from the keyboard.

2. The first writeln statement outputs a prompt. The purpose of this is to remind
you to enter a number.

3. The readln statement reads a number from the input, and then assigns that
number to "x".

4. Since the square root of a negative number is undefined (for the real

numbers, at least), you will get odd results if you enter a negative number.
This defect in the program will be corrected in a later example.

A Quick Tutorial Introduction to Pascal 13

EXAMPLE 11 Reading And Loops

This example places the computations of Example 10 into a while loop. The loop
stops when a value of —999 is input.

program examplel 1(input, output);
var
X, xsquared : integer;
rootofx : real;

begin

writeln('Enter an integer:’);

readln(x);

while(x <> —999)do

begin
rootofx := sqrt(x);
xsquared := Xx*x;
writeln(x, 'squared =', xsquared,
s sqrt(’, x,) =', rootofx);

writeln('Enter an integer:’);
readin(x);

end;
end.
Notes:
1. The while statement uses the "<>" ("not equal”) relational operator.
2. The program contains two pairs of identical lines (the prompt, and the readln

statement). In the next example, we will see a way to avoid this repetition.

14

A Quick Tutorial Introduction to Pascal

EXAMPLE 12 Procedures

This example produces the same output as Example 11. A procedure is used to do the
prompting and reading.

Notes:

program example12(input, output);
var
X, xsquared : integer;
rootofx : real;

procedure getnumber;
begin
writeln('Enter an integer:’);
readin(x);

end;
begin
getnumber;
while(x <> —999)do
begin
rootofx := sqrt(x);
xsquared := x*x;
writeln(x, ' squared =', xsquared,
"5 sqrt(’, x, ') =', rootofx);
getnumber;
end;
end.

A procedure by the name "getnumber” is defined in the declaration section of
this program. A procedure is very similar in structure to a program: it
consists of a procedure heading ("procedure getnumber”), a declaration
section (this procedure doesn’t have one) and a procedure body (the four
lines following the heading).

Procedure declarations occur between the variable declarations and the body
of the program.

"o

The procedure body ends with a";", whereas the program body ends with a

nn
.o

A Quick Tutorial Introduction to Pascal 15

4.

The purpose of a procedure is to isolate a group of statements that performs a
specific function. This is often referred to as program modularization.

Procedures are used by having a statement which consists of nothing but the
procedure name. Whenever such a statement is encountered, the procedure
is invoked, and all of the statements in the procedure body are executed.
When the end of the procedure body is reached, execution resumes at the
statement following the invocation statement.

16 A Quick Tutorial Introduction to Pascal

EXAMPLE 13 Boolean Variables and If Statements

The "negative square root” problem from the preceding examples is corrected. Also, a
more elegant way to stop the program is shown.

program examplel3(input, output);
const
endingvalue = —999;
var
X, Xxsquared : integer;
rootofx : real;
done : boolean;

procedure getnumber;
begin
writeln('Enter an integer:’);
readin(x);
done := (x = endingvalue);
end;

begin
getnumber;
while(not done)do
begin
xsquared := x*x;
write(X, * squared =’, xsquared,
5 sqrt(’, x, 1) =");
if(x >= 0)then
begin
rootofx := sqrt(x);
writeln(rootofx);
end
else
begin
writeln(' undefined’);
end;
getnumber;
end;
end.

A Quick Tutorial Introduction to Pascal 17

Notes:

A new kind of type is used in the declaration of variable "done”: it is the
Boolean type. A Boolean variable may have either the value true or the
value false. Note that true and false are not strings; they are Boolean
constants, in the same sense that 27 and —3 are integer constants, for
example.

The statement "done := (x = endingvalue)” in procedure getnumber may be
interpreted as follows:

® the relational expression “(x = endingvalue)” is evaluated, and
gives the value true or false (the "=" is the "equal to" relational
operator).

® the resulting value is assigned to the Boolean variable "done”.

The while statement in the program body uses a new kind of relational
expression. As mentioned above, the variable "done” will have a value of
either true or false; "not” is a Boolean operator that inverts the value (not
false is true, and not true is false). Thus, the resulting value will still be
either true or false, and the while statement works the same way as before.

A new statement, write, is used. It is very similar to writeln, the difference
being that subsequent write or writeln statements will put their output on the
same line. For example, all of the following groups of lines produce the
same output:

write('a’); write('a’); writeln('abc’);
write('b’); writeln(‘'be’);
writeln(‘¢’);

They all produce a line:

abc

18

A Quick Tutorial Introduction to Pascal

Another new statement is the if statement. It is used to select between two
alternatives. There are two forms of an if statement. The first form executes
the first object statement (the “then part”) if the value of the relational
expression is true, and executes the second object statement (the "else part”)
if the value of the relational expression is false. In the second form, the "else
part” is optional. In this case the "then part” is executed if the value of the
relational expression is true, otherwise execution proceeds at the statement
following the if.

As in the for and while statements, the object statement of an if statement
may be a compound statement.

A Quick Tutorial Introduction to Pascal 19

EXAMPLE 14 A Loop Within a Loop

This example summarizes many of the ideas presented so far. The program produces
a set of tables of squares and square roots.

program example14(input, output);

const
width = 15;
endingvalue = —999;
var

X, Xvary : integer;
loopcounter, tablelength : integer;
done : boolean;

procedure getstartingx;
begin
writeln('Enter the table starting value:’);
readln(x);
done := (x = endingvalue);
end;

begin
getstartingx;
while(not done)do
begin
writeln(
'Enter the increment for x, and the table length:’);
(*1%) readin(xvary, tablelength);

writeln(‘'X':width, 'X*X":width, 'Sqrt(X)':width);
for loopcounter := 1 to tablelength do

begin
(*2%) write(x:width, (x*x):width);
if(x >= 0)then
(¥2%) writeln((sqrt(x)):width)
else
writeln('undefined’:width);
= X + Xxvary,
end;

writeln(‘End of table’);
(*3%) writeln;
getstartingx;
end;
end.

20

Notes:

A Quick Tutorial Introduction to Pascal

This example uses a "loop within a loop”. The inside loop is the for
statement, and the outside loop is the while statement. The outside loop is
said to include or enclose the inner loop, and the inner loop is sometimes
referred to as a nested loop.

The readln statement indicated by (*1*) inputs two numbers. They may be
entered on the same line (with a blank in between), or on separate lines.

The lines in the program indicated by (*2*) show that it is possible to use a
length modifier on any expression value, and not just a variable.

The writeln statement indicated by (*3*) simply outputs a blank line.

A Quick Tutorial Introduction to Pascal 21

EXAMPLE 15 Output Formatting

The field width modifiers used so far have all been constants. They may also be
variables and expressions. Example 15 demonstrates this feature by drawing a
triangle.

program example15(output);
const
width = 21;
var
leftside, middle, i : integer;

begin
leftside := width div 2;
middle := leftside + 1;
writeln('*':middle);
for i := middle+1 to width—1 do
begin
writeln('*':leftside, '*':(i—leftside));
leftside := leftside — 1;
end;
fori:= 1 to width do
write('*');
writeln;
end.

Notes:

1. The object statement of the second for statement is a single statement, so no
"begin-end” pair is required.

2. The last writeln statement is needed to "finish off” the output line created by
the preceding for statement.

3. "div" is an arithmetic operator that performs an integer division (i.e. any
fraction is thrown away). The resulting value is of type integer, and both of
the operands must be of type integer.

22 A Quick Tutorial Introduction to Pascal

EXAMPLE 16 Subranges of Integers
The Pascal construct "subrange of integer” is introduced.

program examplel6(input, output);
var
thisdecade : 1980..1989;
hour : 0..23;
minute, second : 0..59;

begin
while(true)do
begin
writeln('What year is it?');
readln(thisdecade);
writeln(' What time is it (hh mm ss)?’);
readln(hour, minute, second);
end;
end.

Notes:

1. All of the variables in this program are declared with a new kind of type: a
subrange of integer. A subrange declaration tells Pascal that the variables
may be assigned only the values specified by the subrange. For example, the
variable "thisdecade” may have only the integer values 1980, 1981, 1982,
..., 1989. Any attempt to give subrange variables a value outside their
declared range will result in an error.

2. The program executes an infinite loop (the relational expression has the
constant value of true, so it never stops), so that you may try entering various
values. When you want to stop, simply enter a value outside the range of the
variable that is being prompted, and Pascal will give an error message.

A Quick Tutorial Introduction to Pascal 23

EXAMPLE 17 User-defined Types

This example does the same thing as the previous example. The declarations of the
variables are made with user-defined types.

program examplel7(input, output);
type
eighties = 1980..1989;
validhours = 0..23;
minorsec = 0..59;
var
thisdecade : eighties;
hour : validhours;
minute, second : minorsec;

begin
while(true)do
begin
writeln('What year is it?’);
readIn(thisdecade);
writeln('What time is it (hh mm ss)?’);
readin(hour, minute, second);
end;
end.

Notes:

1. There is a new kind of declaration in the program, namely a #fype
declaration. A type declaration is used to give a name to some collection of
values, in the same sense that "boolean” is the name for the collection of
values “true” and "false”. For example, the declaration for type "validhours”
says that this type consists of the integer values in the integer subrange 0..23
(i.e. the values O, 1, 2, ..., 23). Once a type has been declared, it may be
used in a variable declaration just like real, integer etc. .

2. Type declarations occur between the constant declarations and the variable
declarations.

3. The name of a type is called the type identifier.

24 A Quick Tutorial Introduction to Pascal

EXAMPLE 18 Arrays

This program inputs 5 integers, and uses an array to store them. The list is then output
in reverse order.

program example18(input, output);

const

lower = 1;

upper = 5;
type

bounds = lower..upper;
var

index : bounds;
list : array[bounds] of integer;

begin
for index := lower to upper do
begin
writeln('Enter an integer:’);
readin(list[index]);
end;
writeln('The list of numbers (backwards) is:');
for index := upper downto lower do
writeln(list] index 1);

end.

Notes:

1. The variable "list” is declared to be an array of integers. The number of
elements in the array is specified by the subrange in the square brackets (in
this case, the subrange of integer "bounds”), so that "list’ has 5 elements:
list[1], list[2], ..., list[5].

2. "list" also could have been declared as

var
list : array[1..5] of integer;

but the method used is preferable from a programming style point of view.

A Quick Tutorial Introduction to Pascal 25

3. Any subrange may be used to define the size of an array, for example:
list : array[10..15] of integer
would be a six-element array (list[10], list[11], ..., list{15]), and
list : array] —5..5] of integer

would be an eleven-element array (list{—5], list{—4], ..., list[0], list[1], ...,
list{5]).

4. A new kind of for statement is used. It uses the keyword "downto” instead of
"to”. Instead of being incremented by 1 each time, the for statement index is
decremented by 1 each time. The loop ends when the index is equal to the
final value.

26

EXAMPLE 19 Two-dimensional Arrays

A Quick Tutorial Introduction to Pascal

The program prompts for “rows” of integers. A two-dimensional matrix is constructed

from the input, and then displayed.

program examplel9(input, output);

const
width = 10;
rowmin = 1;
rowmax = 5;
firstonrow = 1;
lastonrow 5;
type

numberofrows = rowmin..rowmax;
rowsize = firstonrow..lastonrow;
rows = array[rowsize] of integer;

var

rownumber : numberofrows;

rowindex : rowsize;

matrix : array[numberofrows] of rows;

writeln('Enter a row of’, lastonrow:3,

for rowindex := firstonrow to lastonrow do

read(matrix[rownumber][rowindex]);

begin

for rownumber := rowmin to rowmax do

begin
" numbers:’);
(*1%
readln;

end;

writeln;

writeln('The complete matrix is:’);
for rownumber := rowmin to rowmax do

begin

for rowindex := firstonrow to lastonrow do
write(matrix[rownumber][rowindex }:width);

writeln;
end;
end.

A Quick Tutorial Introduction to Pascal 27

Notes:

1. The variable matrix is declared to be an "array of arrays”; each element of the
first (or "outer”) array is itself an array (the "inner” array).

2. The elements of "matrix” are referred to by specifying the outer array
subscript followed by the inner array subscript: matrix[3]{5] for example.

3. The entire array is referenced as follows:

matrix[1][1] matrix[1]{2] ... matrix[1][5]
matrix[2][1] matrix[2][2] .
matrix[5][1] e ... matrix[5][5]

4. This method of nesting arrays may be used to create matrices of any
dimension. For example, an "array of array of array” would be a
three-dimensional array.

5. The for statement indicated by (*1%*) has a read statement. Read is like

readln, except that subsequent read’s followed by a final readin will get their
input from the same line. The for statement is followed by a readln so that
the next row may be read from a new input line (after the prompt).

A Quick Tutorial Introduction to Pascal

EXAMPLE 20 User-defined Functions

A two-dimensional matrix is created as in the previous example. A user-defined
function is declared and used to compute the largest element in each row of the

program example20(input, output);
const
rowmin = 1;
rowmax = 5;
firstonrow = 1;
lastonrow = §;
type
numberofrows = rowmin..rowmax;
rowsize = firstonrow..lastonrow;
rows = array[rowsize] of integer;
matrixshape = array[numberofrows] of rows;
var
rownumber : numberofrows;
rowindex : rowsize;
matrix : matrixshape;

function maxrowelement(thisrow : rows) : integer;
var
max : integer;
index : rowsize;
begin
max := —maxint;
for index := firstonrow to lastonrow do
if(thisrow[index] > max)then
max := thisrow[index];
maxrowelement := max;
end;

begin
for rownumber := rowmin to rowmax do
begin
writeln(‘Enter a row of’, lastonrow:3,
! numbers:’);
for rowindex := firstonrow to lastonrow do
read(matrix{ rownumber][rowindex]);
readln;
end;

A Quick Tutorial Introduction to Pascal 29

Notes:

writeln;
for rownumber := rowmin to rowmax do
writeln('The maximum element in row’, rownumber:3,
' is’, maxrowelement(matrix{ rownumber 1));
end.

A function, "maxrowelement” is declared. Functions are similar to
procedures except that they refurn a value. The function is invoked by using
it in an expression, and the value that is returned replaces the function name
in the computation of the expression.

Somewhere in the body of the function there must be a statement that assigns
the value to be returned to the function name.

Functions are declared following the variable declarations (the same place as
procedures). The ":integer” after the function header says what type of value
the function will return.

The function in this program is declared with a parameter. This is done so
that the function may be used with different data. In this case, the parameter
is an entire row from the matrix. Parameters may also be used with
user-defined procedures.

The function has its own declaration section, and declares some local
variables. They are called local because they are "created” when the function
is invoked (and "destroyed” when the function returns), and because only the
function in which the variables are declared may refer to them. For example,
if you were to refer to variable "max” in the body of the program, an error
would occur.

Functions and procedures may also declare local constants and types (and
even local procedures and functions).

"maxint” is a built-in constant that represents the largest integer that can be
represented on the computer. Thus, "—maxint” is the smallest integer.

30 A Quick Tutorial Introduction to Pascal

EXAMPLE 21 Character Variables
This program introduces Pascal character manipulation.

program example21(input, output);
const
stringlength = 5;
greeting = 'Howdy’;
type
stringtype = packed array[1..stringlength] of char;
var
string : stringtype;
index : 1..stringlength;
characterindex : char;

begin
string := 'Hello';
writeln('string has the value ”’, string, """);
string := greeting;
writeln(’string now has the value "', string, "');
for index := 1 to stringlength do
writeln(’string[’, index:2, ‘]is "/,
string{ index 1, """);
writeln('Enter a ', stringlength:2,
' —character string’);
for index := 1 to stringlength do
(*1*) read(string[index]);
readln;
writeln("You entered "', string, ');
writeln(
'Here are the lower-case alphabetic characters:”);
for characterindex := 'a’ to 'z’ do
(*2*) write(characterindex);
writeln;
end.

A Quick Tutorial Introduction to Pascal 31

Notes:

1. A new type is used in this program: the char type. The set of values specified
by this type is the character set of the computer being used to run your Pascal
programs.

2. A new type is defined: "stringtype”. It is a five-element array of single
characters. The keyword packed indicates something to Pascal; for all intents
and purposes it may be ignored (although it must be there!).

3. String constants such as '"Howdy’ may be assigned to variables which are
declared to be of type “stringtype”; however the constants must be exactly the
same length as the array.

4. The for statement indicated by (*1*) shows how to read a character string
one character at a time.

5. The for statement indicated by (*2*) demonstrates that a character variable

may be used as a for statement index, in which case the initial and final
values must be characters.

32 A Quick Tutorial Introduction to Pascal

EXAMPLE 22 Arrays of Strings

A list of strings is read by the program and saved in an array. The program prints each
string according to the reply to the prompt, and stops when an invalid number is
entered.

program example22(input, output);
const
stringstart = 1;
stringend = 20;

liststart = 1;

listend = 5;

blankstring = '
type

stringsize = stringstart..stringend,;
stringtype = packed array[stringsize] of char;
listsize = liststart..listend;
listtype = array] listsize] of stringtype;
var
list : listtype;
requestedstring, listindex : listsize;
done : boolean;

function getrequest : listsize;
var
n : integer;
begin
writeln(
'Enter the number of the string you wish to see:’);
readin(n);
done := ((n < liststart) or (n > listend));
if(done)then
n := liststart; (* return anything valid *)
getrequest ;= n;
end;

procedure getstring(which : listsize);

var
index : integer;
junk : char;
begin

list[which] := blankstring;
index := stringstart;

A Quick Tutorial Introduction to Pascal 33
while(not eoln)do
if(index > stringend)then
read(junk) (* get rid of unwanted chars *)
else
begin
read(list[which][index]);
index := index + 1;
end;
readln;
end;
begin
for listindex := liststart to listend do
begin
writeln('Enter a string:’);
getstring(listindex);
end;
requestedstring := getrequest;
while(not done)do
begin
writeln(list[requestedstring]);
requestedstring := getrequest;
end;
end.
Notes:
1. The parameter to procedure "getstring” indicates which string is to be read.
The string is read one character at a time, up to a maximum of 20 characters.
2. "getstring” uses a built-in Boolean function called "eoln” ("end-of-line").
"Eoln” returns true if all the characters on the line you typed have been read
in, otherwise it returns false.
3. Variable "list” is usually thought of as an array of strings. It could be thought
of as a two-dimensional character matrix, however.
4, The method used to determine if the reply to the prompt should stop the

program is somewhat more complicated than before. A compound Boolean
expression with an "or” operator is used to determine if the reply is a valid
index into the array. If it isn't, variable “done” is set to true, and the program

stops.

34 A Quick Tutorial Introduction to Pascal

EXAMPLE 23 Enumerated Types
Some simple properties of Pascal’s enumerated types are demonstrated.

program example23(output);
type
colour = (red, yellow, blue, orange, green, purple);
primary = red..blue;
var
shade : colour;
basic : primary;

begin

shade := orange;
basic := yellow;
if(shade = green)then

writeln('The value of shade is green.”)
else if(shade < green)then

writeln('The value of shade is less than green.’)
else

writeln('The value of shade is greater than green.’);
if(shade > blue)then

writeln(

'The value of shade is not in the primary subrange.’)

else

writeln(

"The value of shade is in the primary subrange.’);

shade := pred(shade);
basic := succ(basic);
if(shade = basic)then

writeln(‘Shade and basic have the same value.’);
basic := purple;

end.

Notes:

1. The user-defined type “colour” is called an enumerated type. An enumerated
type defines all the constant values that make up the type. For example, the
standard type "Boolean” is really an enumerated type defined as follows:

type boolean = (false, true);

As you recall, false and true are constants of the Boolean type.

A Quick Tutorial Introduction to Pascal 35

2. In this example, red, yellow, blue, orange, green and purple are constants of
the colour type.

3. An enumerated type also specifies an ordering of the constants. In
particular, false is less than true, and red < yellow < blue < orange < green
< purple.

4. Subranges of ecnumerated types may be declared. This means that

enumerated types may be used as array indices, for example.

5. Two new built-in functions are used in the program. They are pred and succ.
Pred (“predecessor”) returns the value that precedes its parameter, according
to the ordering defined by the type declaration. Succ ("successor”) returns the
next value in the ordering. Succ and pred may also be used with integers, so
that "pred(12)" would be 11, and "succ(—15)" would be — 14, for example.

6. The last assignment statement in the program causes an error. Variable
"basic” is of type "primary”, which has only three values (red, yellow and
blue); purple is not one of these values, so an error occurs.

36 A Quick Tutorial Introduction to Pascal

EXAMPLE 24 Set Types and the Case Statement

One of the more unusual type constructs in Pascal is the set type. This example
demonstrates the use of sets.

program example24(output);
type
colour = (red, yellow, blue, orange, green, purple);
blend = set of colour;
var
shade : colour;
rainbow : blend;

procedure colourstring(requested : colour);
begin
case requested of
red: write('red’);
yellow: write('yellow’);
blue: write('blue’);
orange: write('orange’);
green: write(‘green’);
purple: write('purple’);
end
end;

procedure whatsintheset(s : blend);
var
colourindex : colour;
begin
for colourindex := red to purple do
if(colourindex in s)then
begin
colourstring(colourindex);
writeln(is in the set.”);

end;
end;
begin
writeln(

"#*% Initial definition: red, yellow, blue and purple.’);
rainbow := [red, yellow, blue, purple];
whatsintheset(rainbow);
writeln('*** Orange is added.’);

A Quick Tutorial Introduction to Pascal 37

Notes:

rainbow := rainbow + [orange];
whatsintheset(rainbow);
writeln('*** Yellow is removed.’);
rainbow := rainbow — [yellow];
whatsintheset(rainbow);
writeln('*** Intersected with purple.’);
rainbow := rainbow * [purple];
whatsintheset(rainbow);
writeln("*** Nothing is in a null set:’);
whatsintheset({]);
writeln("*** Was there anything?’);
writeln('*** Everything should be in this one:’);
whatsintheset([red..purple]);

end.

A set may be thought of as a collection of elements of some other type
(called the basetype of the set). In this example, we have a set (or collection)
of colours. The operations that may be performed on a set include: the ability
to add elements to a set (set union, denoted by "+"); removing elements from
a set (set difference, denoted by "-"); finding out what elements are
common to two sets (set intersection, denoted by "*"); and testing to see if a
particular element is in a set (set membership, denoted by "in").

Set constants are formed by enclosing constants of the set basetype in square
brackets, for example [red] or [yellow..orange]. The latter example means
all elements from yellow to orange. A set with no elements, the null set, is
formed with empty brackets: [].

The case statement used in procedure "colourstring” is used to select one of a
number of alternatives. The first line of the statement contains a selector
expression (in this case, just a variable value). The case statement attempts
to find a match between the selector expression value and one of the case
constants that follow. If a match is found, then the statement (or compound
statement) beside the case constant is executed. If no match is found, an
€ITOr OCCUrs.

Notes

39

Introduction to the Reference Manual

The Reference Manual consists of two main sections (A and B) followed by
several brief sections (C, D, E and F) containing quick-reference summaries. The last
section (G), gives details particular to Waterloo microPascal. All other sections refer
to the Pascal language in general.

Section A describes the features of the Pascal language. It specifies the syntax and
meaning of each construct and statement in the language. This section describes
declarations for constants, types, variables, functions and procedures. The rules for
executable statements such as assignment statements and control statements are also
defined in this section.

Section B describes the standard (predefined) constants, types, variables,
procedures and functions. This includes the standard types integer, char, Boolean
and real. The standard procedures and functions of Pascal provide much of the
capability of the language; for example, input/output is accomplished in this way.

The next sections (C, D, E and F) provide brief summaries of the reserved words,
delimiters, operators and syntax.

Notes

41

Reference Section A

Syntax and Semantics Definition

A.1 Notation

The following notation is used in the syntax definition of Pascal.

{abc) abc is optional
{abc}® abc may be repeated 0 or more times
{abc}! abc must be repeated 1 or more times
abc |def choose abc or def
abc

or def choose abc or def
abc abc is a keyword

Definitions will be enclosed like the definitions above. The item being defined
will be shown in italics and the definition of the item will follow, beginning on the
next line and indented. The style of definition is based on a modification of

Backus-Naur form.

A.2 Basics

digit
llo!l | nlrl I non I . l 119"

letter
n all Ilb" n c" s "Z”

or n A" | "B" l "Cn ‘ l "o

42 Reference Section A

number
{digit}!(.{digit}') {exponent)

exponent
e(+]|—){digit}!

id
letter{letter] digit}°

string
'{any character}!’

There are four basic classes of symbols which constitute the vocabulary of the
Pascal language:

¢)) numbers (e.g. 1, 1.2, 1.2e¢34, 1.2E-21)

)] id’s (short for identifiers) (e.g. X, y, abc, z221)
3) quoted strings (e.g. 'a’, 'abc’)

G special symbols (e.g. begin, end, :=, ;)

These symbols are also known as tokens. A single token must be completely
contained on a single line. The maximum length of an identifier is bounded only by
the rule that tokens may not span lines. It is only guaranteed that the first eight
characters of an identifier will be used to distinguish it from other identifiers.

Special symbols include delimiters such as comma (,), semicolon (;), and
reserved words such as if, while and begin. Some special symbols are not available
on all computer hardware so alternate representations are available for them; see
Reference Section D for definitions of these alternate representations.

Letters outside quoted strings are case insensitive (i.e. capitalized and
uncapitalized letters are treated as being equivalent); Begin is equivalent to begin and
the variable 4 is the same as a.

In a number an "¢” means “times 10 to the power of”. Reference section A.4.2
describes numeric constants in detail.

Syntax and Semantics Definition 43
In a quoted string, two consecutive quotes are used to represent each quote
character which is to be part of the string. For example, the quoted string
Iitl Isl
contains the word
it's

A comment consists of an opening brace ({) followed by any string of characters,
followed by a closing brace (}). Comments may not contain closing braces.

Blanks, comments and ends of lines are known as token separators. The
following rules apply:

) at least one token separator must occur between any consecutive pair of
id’s, keywords or numbers,

)] token separators may appear only between tokens, never within tokens;
blanks within quoted strings are not considered to be token separators,

3 token separators do not otherwise affect the meaning of a program.

Thus, a Pascal program may be entered in "free format” as long as tokens do not
span lines and tokens are properly separated from one another.

44 Reference Section A

A.3 Programs and Blocks

program
program-heading;
block

program-heading
program program-name (program-parameter-list)

program-name
id

program-parameter-list
(id-list)

id-list
id {, id}?

block
declarations
begin
{statement; }°
statement
end

A program consists of a program heading followed by a block. This block is
called the main block; program execution begins with the activation of the main
block. The main block is followed by a period (.).

The program heading gives a name to the program and optionally declares a list of
identifiers which is the program parameter list. The program name is the identifier
directly following the keyword program. It has no meaning within the program
although some implementations may choose to give it a meaning outside the program.

Syntax and Semantics Definition 45

Program parameters refer to variables in the main block (usually files) which may
correspond (in some implementation-defined manner) to entities which exist outside
the program. They facilitate communication between a Pascal program and the
system under which it is running. If a program is to reference files which were in
existence before the program is executed, or if files which the program processes are
to remain in existence after the program terminates execution, then these files are
called external files and their names must occur in the program parameter list.
(External files must also be global; i.e. declared in the main block.) If the standard
files input and output are mentioned in the program parameter list then they are
declared and automatically initialized prior to program execution.

example:
program example(input, output);

A block is a basic unit in the Pascal language. Programs, functions and procedures
each consist of a heading followed by a block. The heading associates 2 name with
the block. A block consists of two parts:

N declarations,

) executable statements.
The declarations define the items to be operated upon, such as variables. The

executable statements define the actions to be performed when the block is activated.

A.4 Declarations and Scope

declarations
(label-declarations)
{constant-declarations)
(type-declarations)
{variable-declarations)
{procedure-and-function-declarations)

Every entity which is referenced in a Pascal program (i.e. labels, constants,
types, variables, functions and procedures) must be defined in a declaration.

46 Reference Section A

Since the declarations for a block can themselves contain procedure and function
declarations, blocks can be nested to an arbitrary depth. Entities defined in a
particular block are said to be local to that block. A nested block inherits all of the
declarations from the parent block in which it is contained. Any inherited definitions
may be superceded by local definitions.

Entities defined in the main block are said to be global, since all procedures in the
program can potentially inherit them.

The set of blocks over which a particular definition of an identifier or label applies
is called the scope of the definition.

An identifier or label may have only one definition for each block. Once an
identifier has been defined in a declaration or used to reference an inherited
definition, the meaning of the identifier for that block is determined. An identifier
must be defined prior to its use except in the following case: a pointer type declaration
may reference a type identifier which is defined subsequently in the type declarations.

A.4.1 Labels

label-declarations
label
label {, label}?;

A label declaration defines a symbol to be a statement label.

label
{digit}!

A label must identify exactly one statement in the executable statements of the
block in which the label is local.

The label may be referenced by any goto statement within its scope.

Syntax and Semantics Definition 47

A.4.2 Constants

constant-declarations
const
{id = constant;}!

A constant declaration defines an identifier to represent a constant value. The
constant identifier may then be used in place of the constant value, anywhere within
the scope of the identifier.

constant

{+|—) number
or (+|—-)id
or string

Constant values have one of four data types.

) A number which has no decimal point or exponent is of type integer (e.g.
12345).

2 A number which has a decimal point, an exponent, or both is of type real
(e.g. 123.45, 12345, 123.45e67).

3 A quoted string of length one is of type char (e.g. 'a’).

€] A quoted string of length greater than one is of type
packed array [1 .. length] of char
(e.g. 'Hello’ is of type packed array [1..5] of char).
In real numeric constants an "e” means “times 10 to the power”. (An upper case
"E” may be used instead of the lower case "e”.) This is called exponential notation or
scientific notation.

An identifier used as a constant must have been previously defined as a constant.
Note that where a constant value is necessary (e.g. in a subrange type declaration), a
variable will not suffice.

A constant preceded by a sign (+,—) must be of type integer or real. The plus
sign (+) has no effect and the minus sign (—) denotes negation (change of sign).

48 Reference Section A

A.4.3 Types

type-declarations
type
{id = type;}!

A type declaration defines an identifier to be the name of a type.

bype
type-id
or enumerated-type
or subrange-type
or {packed) array-type
or (packed) set-type
or (packed) file-type
or pointer-type
or (packed) record-type

Types are used to describe data.

Packed indicates that the compiler should store the data in a compact manner,
possibly at the cost of less efficient access to the data.

Syntax and Semantics Definition 49

Definitions Relating to Types
Ordinal Type
A type is ordinal if it is any of the following:
(D integer,
) char,
3) enumerated (including Boolean),
(Y] subrange.
Note that this does not include type real.
Ordinal types all define an ordered set of values.
Identical Types

A type, tl, is identical to another type, 2, if they have been declared to be
equivalent in a declaration of the form

type
t] =12;

Any type is naturally identical to itself.
String Type
A type is a string type if it is of the form
packed array [1 .. n] of char
In particular, the following are not string types:
packed array [0 .. n] of char
packed array [(red, green, blue)] of char

packed array [1 ..n Jof 'a’..’z’
array [1 .. n] of char

50 Reference Section A

Compatible String Types
Two string types are compatible if they have the same number of elements.
examples:
'abc’ is type compatible with any packed array [1..3] of char
'abe’ is not type compatible with ‘ab’ or “abcd’
Compatible Types
Two types, tI and £2, are compatible if at least one of the following holds:
€Y t] and 12 are identical,
2) t! is a subrange of 22,
3 12 is a subrange of ¢/,
“) t]l and 2 are both subranges of another type,
3 t] and 2 are compatible string types,
©6) t] and 12 are sets with compatible base types,
Q) t! is compatible with type integer and 12 is real,
® 2 is compatible with type integer and ¢l is real.
Assignment Compatible
A type, tI, is assignment compatible to another type, 72, if ¢/ and 2 are

compatible, provided that if ¢/ is real then r2 must be real. In other words, real values
may not be assigned to integer variables.

Syntax and Semantics Definition 51

A.4.3.1 Simple Types

type-id
id

A type may be defined simply by a reference to a previously defined type
identifier. There are five predefined type identifiers:

¢)) integer,
2) char,
3) real,
@) Boolean,
(5) text.
Reference Section B.3 describes predefined types.
exampie:

type
temperature = real;

enumerated-type
(id-list)

A type may be defined by enumerating a list of identifiers which are to denote the
values of the type. Each id in the list is then a constant of the enumerated type which
is being defined.

example:

type
spectrum = (infrared, red, green, blue, ultraviolet);

52 Reference Section A

subrange-type
constant .. constant

A type may be defined by specifying a range of values within a previously defined
ordinal type. The new type is denoted by the low and high bounds for the range of
values. The low and high bounds must be constants of the same type, called the base
type, and the low bound must be less than or equal to the high bound.

example:
type
visible = red..blue;
days = 0..365;

A.4.3.2 Arrays

array-type
array [index-type {, index-type}°®] of type

index-type

type-id
or enumerated-type
or subrange-type

An array is a fixed-length list of data items, all of the same specific type (called
the constituent type). Each element in the list is identified by an element from the set
defined by the index type, which must be ordinal. The number of elements in an array
is therefore the number of elements in the ordered set defined by its index type.

Syntax and Semantics Definition 53

example:
array [1..10] of char

The above defines a list of ten characters, which might be viewed as a ten-character
word. The construct

array [1..20] of array [1..10] of char

defines a list of twenty words of ten characters each.
Pascal permits this to be denoted more conveniently as

array [1..20, 1..10] of char
Reference Section A.5.2.1 describes the access of array elements.
Arrays of the form

packed array [1 .. n] of char

are called strings, and the relational operators are defined for them.

A.4.3.3 Sets

set-type
set of enumerated-type
set of subrange-type
set of type-id

A set type is defined in terms of an ordinal base type, and represents a collection
of elements from its base type. Each element in a set can have one of two states:
present or not present.

Consider the example:

type
Jfruit = (apple, orange, peach);
basket = set of fruit;

The type fruit has three values denoted by apple, orange and peach.

54 Reference Section A

The type basket has eight possible values denoted by

[] [apple, orange]
{apple] [apple, peach]
[orange] [orange, peach }

[peach] [apple, orange, peach]

The possible values for a set are all the combinations of the elements from its base
type, including the empty set. This is the set of all subsets of the base type, and is
called the powerset of the base type. The ordinal positions of the largest and smallest
elements in the base type of a set are implementation-defined.

The set operators are described in Reference Section A.5.2.2. They include set
union, set difference, set intersection and tests for set inclusion.

A.4.3.4 Files

file-type
file of type

File types are lists of elements, all of one particular type (called the constituent
type). There are several significant differences between files and arrays that make
files particularly suitable for representation on terminals or printers, or for storage on
disk or tape.

Before a file may be used it must be initialized. This is done by an activation of a
standard procedure. The elements may then be accessed sequentially; this means that
one element only is available at any given time. The element that is available is called
the current element. This access scheme may be viewed as having a window on the
file from which one element may be seen. Every file has a buffer variable associated
with it which contains the value of the current element. Whenever access to a file is
initiated, the current element is the first element in the file. The next element after the
current element can become the current element (the window may be moved ahead
one element) by an activation of a standard procedure. No other movement of the
window, such as ahead more than one at a time, is provided.

A file may be accessed for either reading or writing at any one time. Reading
means that the elements may be examined but not modified. Writing means that the
contents of the file are deleted and new elements may then be added to the empty file.
A file may be accessed an arbitrary number of times by a program.

Syntax and Semantics Definition 55

The number of elements in a file is not specified in the declaration. There is a
standard procedure to detect when the window has been advanced past the last
element when reading a file.

If a file existed before a program using it was executed, or if a file is to remain in
existence after a program processing it has terminated execution, then the file is said
to be external to the program. External files permit communication between
programs. The names of the file variables corresponding to external files must occur
in the program parameter list and the file variables must be global (i.e. declared in the
main block). Files which are not external are said to be internal and exist only for the
duration of the program.

See Reference Section A.5.2.1 for a description of the access of a file buffer
variable. See Reference Section B.5.7 for a description of the file manipulation
procedures and functions. Reference Section B.3.5 describes the standard type text,
which is the type of the standard files input and output.

A.4.3.5 Pointers

pointer-type
1 type-id

A pointer type has values which “point to” variables of a one particular type
(called the base type).
For example:

type
x = 1 integer;

defines x to represent a type whose values denote integer variables.

The variables pointed to by pointers are created and destroyed at execution time
by the standard procedures new and dispose.

Reference Section A.5.2.1 describes the use of pointer variables. Reference
Section B.5.2 describes the procedures new and dispose.

56 Reference Section A

A.4.3.6 Records

record-type
record
field-list
end

field-list

fixed-fields (;)
or fixed-fields; variant-part (;)
or variant-part ;)

fixedfields
{id-list : type;}°
(id-list : type)

variant-part
case (tag-name :) tag-type of
{variant;}°
(variant)

tag-name
id

tag-type
type-id

variant
variant-label-list : (field-list)

variant-label-list
constant {, constant}°

A record type is a fixed-length list of elements not necessarily all of the same
type. The elements are called fields and each has a field name which designates it.

Syntax and Semantics Definition 57

example:

type
employee =
record
name : packed array [1..20] of char;
age : integer;
sex : (male, female),
end

A record may be defined to have a variant part. This allows a choice in the
definition of the record at execution time. At any time during execution, only one of
the variants of the record may exist. The value of the tag field indicates which variant
is currently in existence.

A tag field name may be specified by including an identifier followed by a colon
directly after the keyword case. The tag type must always be specified following the
optional tag field name. The types of the case label constants must be compatible with
the tag type.

If the tag field name is specified, then assignment of one of the case label values
to it activates the variant corresponding to that case label. Assignment of a value
which is not a variant case label to the tag field is an error.

If the tag field name is not specified in the record definition then assignment to a
field which is not in the currently-active variant activates the newly-referenced
variant. When a variant is activated, the previous variant ceases to exist and the fields
in the new variant have undefined values.

example:

type
employee =
record
name : packed array [1..20] of char;
sex : (male, female);
case employed : Boolean of
true : (jobname : array [1..20] of char);
false : (unemploymentamount : integer);
end

Reference Section A.5.2.1 describes the access of fields within record variables.

58 Reference Section A

A.4.4 Variables

variable-declarations
var
{id-list : type;}!

A variable is used to store a value. Each variable has a type and can store only
values of that type.

Variable declarations define one or more identifiers to represent variables of a
particular type.

A.4.5 Procedures and Functions

procedure-and-function-declarations
{procedure-or-function-declaration}!

procedure-or-function-declaration
procedure-heading;
body;
or function-heading;
body;

procedure-heading
procedure id (formal-parameters)

Junction-heading
function id ((formal-parameters) : type-id)

body
block
or directive

directive
id

Syntax and Semantics Definition 59

A procedure or function is a named block. A procedure is activated by a
procedure invocation statement. A function is activated by a function reference in an
expression and returns a value.

The definition of a procedure or function consists of:

¢)) a heading which must specify the name of the function or procedure, its
parameters, and the type of value it returns if it is a function,

2 the block which is to be executed upon activation of the function or
procedure.

When a function is activated, the value it returns is the value most recently
assigned in an assignment statement which specifies the name of the function on the
left-hand side. Within a function, if the name of the function is used in an expression,
except on the left-hand side of an assignment, it indicates a recursive activation of the
function.

Functions may only return values of ordinal type or of type real.
The block may be defined separately and subsequently to the heading by using the

directive forward in place of the block. The block must then occur subsequently with
a heading which specifies no parameters nor a return value type.

60

example:

procedure X(y, z : integer);
forward;

function Y(u, v : integer) : integer;
forward;

procedure X;
begin

=Y (x z-1);
end;

function Y;
begin

X(u, v),

end;

Reference Section A

Procedure X and function Y are said to be mutually recursive with respect to each
other, since each may invoke the other. Because Pascal requires that entities be
declared before they are referenced, the forward directive is essential for defining

mutually recursive procedures or functions.

A.4.5.1 Formal Parameters

formal-parameters

(parameter-group {; parameter-group}°)

parameter-group

id-list : type-id
or var id-list : type-id
or procedure-heading
or function-heading

The procedure or function heading permits declarations of formal parameters.
Parameters allow information be passed to a block upon activation.

Syntax and Semantics Definition 61

The parameters in a procedure or function heading are known as formal parameters.
The entities in a parameter list in an invocation are known as actual parameters and
correspond to the formal parameters when the procedure or function is activated.

Four classes of parameters exist:

M

@

3

Q)

value parameters: This is the default class for parameters. This technique
of parameter passing is referred to as call by value. The formal parameter
is a variable in the block. It is assigned the value of an actual parameter
upon activation. The actual parameter must be of assignment compatible
type to the formal parameter. Since files may not be assigned, they may
not be passed as value parameters.

variable parameters: This class of parameters is designated by the var
keyword. This technique of parameter passing is referred to as call by
reference or call by address. An actual parameter must be a variable of
identical type to the formal parameter. Within the block the formal
parameter denotes the variable specified as the actual parameter.

procedure parameters: A parameter of this class is declared by specifying
a procedure heading as a formal parameter. An actual parameter must be a
procedure with a compatible parameter list (as defined below) to the
formal parameter. Within the block, the formal parameter denotes the
procedure specified as the actual parameter. When a procedure is
activated as a formal parameter it has the environment (inherited
definitions) from which it was passed as an actual parameter.

function parameters: A parameter of this class is declared by specifying a
function heading as a formal parameter. An actual parameter must be a
function with a compatible parameter list (as defined below) to the formal
parameter, and of identical result type to the result type specified for the
formal parameter. Within the block the formal parameter denotes the
function specified as the actual parameter. When a function is activated as
a formal parameter it has the environment (inherited definitions) from
which it was passed as an actual parameter.

62 Reference Section A
Two parameter lists are compatible if they have the same number of parameters
and each corresponding pair of parameters is one of the following:
n value parameters of identical type,
@ variable parameters of identical type,
€)) procedure parameters with compatible parameter lists,
“) function parameters with compatible parameter lists and identical result

types.

A.5 Executable Statements

statement
(label :)
{unlabelled-statement)

Executable statements define actions to be performed. Each executable statement
may have a label associated with it so that it can be referenced by a goto statement.

Note that by the above definition a statement may consist of nothing at all. A
statement consisting of nothing is called a null statement and does not cause any
action when it is executed. Null statements are in no way detrimental to a program
and arise surprisingly often in Pascal programs. This is largely because semicolons (;)
are used as statement separators instead of statement terminators in Pascal, and
therefore no semicolon is required between the last statement in a block and the end
keyword. If a semicolon is included after the last statement in a block then a null
statement exists between that semicolon and the end keyword.

example:

begin

In the above example a null statement occurs between the semicolon and the end
keyword.

Syntax and Semantics Definition 63

unlabelled-statement
procedure-invocation

or assignment-statement

or control-statement

or compound-statement

compound-statement
begin
{statement; }*
statement
end

Executable statements are divided into four classes. Three classes (procedure
invocation statements, assignment statements and control statements) are described in
subsequent sections. The fourth class of statement is the compound statement.

A compound statement is simply a list of statements separated by semicolons and
enclosed by a begin-end pair. Anywhere that a single executable statement may be

used, a compound statement may be used. A compound statement can contain as
many statements as necessary.

64

Reference Section A

A.5.1 Procedure Invocation and Parameters

procedure-invocation

procedure-id

or procedure-id (actual-parameter {, actual-parameter}°)
actual-parameter
procedure-id
or function-id
or variable
or expression
or write-parameters

procedure-id

id

Sunction-id

id

write-parameters

expression { (: expression) : expression)

The procedure-invocation statement is used to activate a procedure and specify
any actual parameters to the procedure. Reference section A.4.5 describes passing
parameters to procedures.

Note that there is a special form of actual parameter which may be used only with
write and writeln to specify the field width for textfile output. See Reference Section
B.5.7 for further details.

A.5.2 Assignment Statement (Variables and Expressions)

assignment-statement

var := expression

The assignment statement is used to assign the value of an expression to a
variable. The type of the expression must be assignment compatible with the type of
the variable. Files may not be assigned.

Syntax and Semantics Definition 65

examples:
a:=1;
bt.a := blue;
a[1] := abc;

Note that, because of the rules for assignment compatibility, infeger values may be
assigned to real variables, but real values may not be assigned to integer variables
without the use of the round or trunc functions.

A.5.2.1 Variables

variable
id
or subscripted-variable
or variable-with-field-selection
or indirectly-referenced-variable

subscripted-variable
variable [expression {, expression}?]

variable-with-field-selection
variable . field-name

field-name
id

indirectly-referenced-variable
variable 1

A variable is used to store a data value. Variables may be referenced in different
ways depending on their type.

66 Reference Section A

Simple Variables

A simple variable (not within an array or record, and not dynamically created) is
specified by its identifier.

example:
var
a : integer;
a:=1;

Elements In Array Variables

An element of an array type variable is specified using a subscript enclosed by
square brackets ([1) following the array variable name. The subscript is a value from

the index type of the array variable, and indicates which element is to be selected
from the array.

example:

var
a : array [1..10] of integer;

al5]:=1;

An array a with n subscripts s/, s2, ..., sn may be referenced in either of the
following ways:

alsi]ls2]...[sn]
or

alsl, s2, ..., sn}

Syntax and Semantics Definition 67

Fields In Record Variables

A field within a record variable is specified by the record variable, followed by a
dot (.) (the field selection operator), followed by the name of the field to be selected.

example:
var
a:
record
r . real;
i :integer;
end
a.i:=1,
a.r := 10.4;

Dynamically Created Variables

A dynamically created variable (created by procedure new) which a pointer value
identifies, may be specified by using the upward-pointing arrow (1) (“points to”
notation). This operation is sometimes called an "indirect reference” or "indirection”.

example:

var
a : 1 integer;

r'z.e.w(a);

68 Reference Section A

File Buffer Variables

The file buffer variable (current element) for a file is also referenced using the
"points to” notation. (The “points to” notation does not imply that the file variable
contains a pointer to the file buffer; it is just a coincidence that the same notation is
used to reference dynamically-created variables.)

example:

var
a : file of integer;

rewrite(a),
al:=1,
put(a);

Syntax and Semantics Definition

A.5.2.2 Expressions and Operators

expression
simple-expr
or simple-expr relational-operator simple-expr

relational-operator
or <>

or <

or <=

or >

or >=

or in

simple-expr
(+ i —) term
or simple-expr adding-operator term

adding-operator

+
or —
or or
term

factor

or term multiplying-operator factor

multiplying-operator

*
or |/
or div
or mod

or and

70 Reference Section A

An expression is a sequence of elements specifying data such as variables, and
operators such as + and —. The elements specifying data are called factors and are
described in the next section (the not operator is also described with factors). See
Reference Section E for a table summarizing the operators and their valid operand
types.

By the standard rules of algebra, the expression
a+b*c
is equivalent to the expression
a + (b*c)
rather than
(a+b) *c

This is because the operator * is of higher priority than the operator +, and higher
priority operators are performed first.

Brackets also may affect the order of evaluation of an expression; see Reference
Section A.5.2.3.

It can be seen from the above syntax definition for expressions that Pascal has
four priorities of operators:

¢} relational operators (lowest priority)
) adding operators (same priority as +)
3 multiplying operators (same priority as *)

@) Boolean not operator (highest priority)

Syntax and Semantics Definition 71

Observe that due to the syntax for expressions, the expression
a<bandc <d
is a syntax error, which is not intuitively expected. Similarly, in the expression
a<bandc

the and is evaluated first which is different from many other programming languages.
Bracketing may be used to overcome these problems.

The following description of the operators is organized by the priorities of the
operators.

Relational Operators (=, <>, <, <=, >, >=,in)

The relational operators are used to compare values to determine if a particular
relationship (e.g. "less than") holds between them. The result is always of type
Boolean; it is true if the relationship specified by the operator holds, and false
otherwise. (See Reference Section E for a definition of what relationship each
operator denotes.) All of the relational operators take two operands.

The relational operators =, <>, <=, >=, < and > may be applied to
compatible operands of type real, integer, char, enumerated (including Boolean),
subrange, or string.

The relational operators =, <>, <= and >= may be applied to compatible set
types, in which case <= and >= denote set inclusion.

The relational operators = and <> may be applied to pointer types with identical
base types.

In arithmetic comparisons, if one operand is real and the other is integer then the
integer operand is converted internally to a real value to be used in the comparison.

72 Reference Section A

The operator in takes a set as its right operand and an expression of a compatible
type to the base type of the set as its left operand. In yields zrue if the left operand
value is included in the set value specified by the right operand, and false otherwise.

examples:

a<b
[1,2] <=11,2,3]
character in ['a’..’z’]

Adding Operators (+, —, or)

If the adding operators + and — have only a right operand (e.g. —5) they are said
to be unary (or monadic). If they have two operands (e.g. 4—5) they are said to be
binary (or diadic).

Unary + has no effect (the identity operation in algebraic terms). Unary —
represents negation (change of sign). Both take an integer or real operand and yield a
result of the same type as the operand.

The binary + and — denote addition and subtraction for numeric values and set
union and difference for sets.

Addition and subtraction require two integer or real operands. The result is the
same type as the operands. If one operand is integer and the other is real then the
integer operand is converted internally to a real value to be used in the operation and
the result is of type real.

Set union and set difference require compatible set operands. They yield a set
value of appropriate type.

The or operator is a Boolean operator. It requires two Boolean operands and
yields a Boolean result. The result is true if either or both of the operands are true,
and false otherwise.

examples:

a+b

¢ + [red, blue, green]
forg

[1..10] — [a..b]

Syntax and Semantics Definition 73

Multiplying Operators (*, [, div, mod, and)

The operator * represents multiplication with numeric operands and intersection
with set operands.

Multiplication requires two operands of type integer or real. The type of the result
is the same as the type of the operands. If one operand is integer and the other real,
then the integer operand is converted internally to a real value to be used in the
operation and the result is of type real.

Set intersection requires compatible set types as operands and yields a set value of
appropriate type.

The operator / represents real division. The operands must be of type real. If one
or both operands is of type integer the conversion to real takes place before the
operation is performed. The result is always of type real.

The operator div represents integer division. The operands must be of type
integer and the result is always of type integer. A div b yields the number of times the
absolute value of a may be subtracted from the absolute value of b and still leave a
positive quantity.

The mod operator represents integer remainder. The operands must be of type
integer and the result is always of type integer. A mod b yields the remainder when a
is divided by b.

The and operator is a Boolean operator. It requires two Boolean operands and
yields a Boolean result. The result is true if both of the operands are true, and false
otherwise.

The not Operator

Not is the highest priority operator. It is described in the next section.

74 Reference Section A

A.5.2.3 Expression Factors

factor
variable
or number
or string
or constant-id
or il

or (expression)

or set-constructor

or not factor

or function-invocation

constant-id
id

set-constructor

[l

or [set-item {, set-item}°]

set-item
expression
Oor expression .. expression

Jfunction-invocation
function-id
or function-id (actual-parameter {, actual-parameter}®)

Syntax and Semantics Definition 75

Expression factors are the elements in expressions which represent values. For
example, in the expression

a+b

a and b are factors and + is an operator. There are nine classes of expression factors.

1

05
3
@
5)

©

variables (e.g. a, af, a[11, a.b)

These yield the value stored in the variable. Note that variable operators
denoted by 1, [] and . are performed before any expression operators such
as +, —, *’ / .

numbers (e.g. 123, 12.34, 12e34, 12.34e56)

strings and single characters (e.g. 'abc’, ‘a’)

constant identifiers

nil

Nil is a keyword which designates a pointer value which means "this
pointer variable does not contain a pointer value”.

(expression)

Parenthesis are used according to the standard rules of algebra to force the
evaluation of an expression to take place in a particular order. For
example, in the expression

a+b*c

if it was required to evaluate the a + b first, rather than the b * ¢ which is
the normal order, then

@+b)*c

could be used.

76

)

®

&)

Reference Section A

not

The not operator is a unary operator. It takes a Boolean operand and
yields a Boolean result. If the value of the operand is true it yields false,
and if the value of the operand is false it yields true.

function invocation

This specifies the activation of a function and the actual parameters for
that activation of the function. The value of this factor is the value
returned by the function. Reference section A.4.5 describes passing
parameters to functions and returning values from functions.

set constructor
A list of set-items enclosed in square brackets ([]) is a set constructor.

The set-items may specify individual elements in the set or ranges of
elements.

examples:

a

all]

at

a.b

al.b

(a+b)

not true

not (a or b)
f(x, ¥y, 2, t)
[red, green]
[a..5, 29]
[a, b, c..d]

Syntax and Semantics Definition 77

A.5.3 Control Statements

control-statement
if-statement

or case-statement

or while-statement

or repeat-statement

or for-statement

or with-statement

or goto-statement

Control statements are used to control the execution of a Pascal program in four
ways.

1) The if-then-else and case control statements choose between alternate
actions to be executed.

) The repeat-until, while-do and for control statements cause some action
to be executed repeatedly.

3) The goto statement causes execution of statements to continue at a new
place in the program.

(4) The with statement makes the fields within specified record variables
accessible using only the field-name.

The if-then-else, repeat-until and while-do statements all use a Boolean
expression, called the control expression, to determine their action. The statements
(actions) which are caused to be executed by control statements are called object
statements.

78

A.5.3.1 IF Statement

Reference Section A

if-statement
if control-expression then
statement
or if control-expression then
statement
else
statement

control-expression
expression

There are two forms of the if statement. The first form of the if statement
performs its object statement if the value of the control expression is true.

examples:

if a < 5 then
a:=a+1

if x in y then

begin
x:=1;
y:=1k
end

The second form of the if statement performs the first object statement (called the
"then part”) if the value of the control expression is true and the second object
statement (called the "else part”) if the value of the control expression is false. Note
that there is no semicolon (;) separating the first object statement from the keyword

else.

For both forms of the if statement, the control expression must be of type
Boolean. The object statements must each be single statements. If several statements
are required as the object, they may be enclosed in a begin-end pair.

Syntax and Semantics Definition 79

examples:

if 9 <y then
y =22
else
y:=20

if test(y, j) then
begin
Jrup(y, j)
writeln(y, j);
end
else
writeln("ok’)

It is often appropriate to use the if statement to select between one of many
choices in the following way:

if expression-1 then
statement-1

else if expression-2 then
statement-2

else if expression-3 then
statement-3

else if expression-n then
statement-n

This construct will execute the action for the first frue condition and then leave the if
construct.

80 Reference Section A

When if statements with else parts are nested a syntactic ambiguity may arise.
The else part in the following statement could apply to either if statement, and is
therefore called a "dangling else”.

if expression then
if expression then
statament
else
statement

The rule for resolving the ambiguity is that above construct has the meaning of the
following non-ambiguous if statement. The else is applied to the closest nested if
statement.

if expression then
begin
if expression then
statement
else
statement
end

Syntax and Semantics Definition 81

A.5.3.2 CASE Statement

case-statement
case selector-expression of
{case-label-list : statement;}°
{case-label-list : statement)
end

selector-expression
expression

case-label-list
constant {, constant}°

The case statement permits selection of one of many actions. Each possible action
consists of one statement. Multiple statements may be enclosed in a begin-end pair.
Each action is identified by one or more case-label values which are constants. If the
value of the selector-expression is equal to the value of a case-label on a statement,
then that statement is executed. If no case-label matches the value of the
selector-expression then an error occurs. All case-labels must be unique over each
case statement. Each time the case statement is executed exactly one of the actions
will be chosen and performed. All case-labels must be of compatible type to the
selector-expression. The selector-expression must be of ordinal type.

example:
case character of

'a’ : Process(y, y);
v’, ¢’ : ; {null action}

Idl .
begin
a:= 1
b:=2;
end;

‘e’ : Process(n, y);
end

82 Reference Section A

A.5.3.3 WHILE Statement

while-statement
while control-expression do
statement

The while statement performs its object statement repeatedly while the value of
the control expression is true. If the control expression is initially false then the object
statement will not be executed at all. The control expression must be of type Boolean.
The object statement consists of a single statement. Multiple statements may be
enclosed in a begin-end pair.

Note that if the statement part does not take some action which affects the value of
the control expression, the statement will repeat endlessly. This situation is called an
infinite loop.

The following is an example of a properly terminating while statement:

i:=1;
while i <= 10 do
begin
writeln(i);
i:=i+1
end

Syntax and Semantics Definition 83

A.5.3.4 REPEAT Statement

repeat-statement
repeat
{statement;}°
statement
until control-expression

The repeat-until statement executes its object statements repeatedly until the
value of the control expression is true. The control expression must be of type
Boolean. Note that there may be multiple object statements; a begin-end pair is not
necessary. Also note that the object statements are always executed at least once since
the control expression is evaluated after each iteration of the loop. This is different
from the while statement which may not execute its object statement at all, since the
control expression is evaluated before each iteration of the loop.

example:

repeat
y i =f(x)
x 1= x + deltax;
writeln(x, y);
until x >= limit

84 Reference Section A

A.5.3.5 FOR Statement

Jor-statement
for control-variable :
statement
or for control-variable := initial-value downto final-value do
statement

i

initial-value to final-value do

control-variable
id

initial-value
expression

final-value
expression

The for statement executes its object statement once for each value in a sequence.
The values in the sequence run from the specified initial value to the specified final
value. The control variable contains the value of the current element in the sequence.
The value of the control variable is undefined when the for statement terminates. The
control variable must be locally declared as a variable of ordinal type. It may not be
inherited from an enclosing scope and it may not be a value parameter or a var
parameter. The contro] variable may not be modified during the execution of a for
statement.

When the for statement is executed the initial-value expression and the
final-value expression are evaluated first. If the loop is to be executed at least once
then the initial value is assigned to the control variable. At the end of each iteration a
new value for the control variable is calculated, if there is to be another iteration.
When the to keyword is specified the succ function is applied to the value of the
control variable to compute the new value for each iteration. When the downto
keyword is specified the pred function is used instead. The object statement is
executed until the value of the control variable reaches the final value.

Syntax and Semantics Definition

examples:

fori:= 1to 10 do
writeln(i)

for j := red downto blue do
begin
match(j, k);
writeln(ord(j));
end

The for statement:

for i := exprl to expr2 do
statement

is equivalent to:

initial := exprl;
final .= expr2;
if initial <= final then
begin
i := initial;
statement;
while i <> final do
begin
{:=succ(i);
statement;
end
end

where initial and final are local variables of the base type of i.

85

86 Reference Section A

The for statement:

for i := expr! downto expr2 do
statement

is equivalent to:

initial := exprl;
final := expr2;
if initial >= final then
begin
i := initial;
statement;
while | <> final do
begin
i:=pred(i);
statement;
end
end

where initial and final are local variables of the base type of i.

Syntax and Semantics Definition 87

A.5.3.6 WITH Statement

with-statement
with var {, var}° do
statement

The with statement executes its object statement with additional variables
available to it. Several variables may be specified in a with statement; they must all
be of type record. Within the object statement, fields in the record variables named in
the with statement may be referred to by field name only. If a variable has the same
name as a field in a record variable which was specified in a with statement, the
variable will be inaccessable within the with statement. If the same name exists in
two record variables which are named in the same or nested with statements then the
latest definition applies.

example:

var
a : Boolean;
b:
record
a : integer;
end;

with b do
a := 1; {refers to b.a}

88 Reference Section A

A.5.3.7 GOTO Statement

goto-statement
goto label

The goto statement is a primitive, low-level mechanism for controlling the flow
of execution of a program. It is very unrestricted and can easily render programs
excessively complex; however, in Pascal there are some instances where it is
necessary. When the goto statement is executed the flow of control transfers to the
point in the program designated by the label specified on the goto. Since labels have
the same scope rules as identifiers, the goto can transfer out of procedures and
functions.

example:
program gotodemo(output);

label
10, 20;

var
i:integer;

begin
i:=1
10:
if i > 100 then goto 20;
writeln(i);
i:=i+1;
goto 10;
20:
end.

89

Reference Section B

Predefined Identifiers

Every Pascal program has certain predefined identifiers available to it.
Conceptually, they are defined in an imaginary outer block which encloses the entire
program, and are referred to as standard identifiers.

B.1 Predefined Labels

There are no predefined labels.
B.2 Predefined Constants

B.2.1 Maxint (Largest Integer)

Maxint is a predefined constant whose value is the largest integer magnitude
representable by the computer hardware. It is implementation defined. The integer
operators +, —, *, div and meod are guaranteed to be implemented correctly when the
absolute values of the two operands and the result are all less than or equal tomaxint.

90 Reference Section B

B.3 Predefined Types

B.3.1 Integer

The range of values for the data type integer is
{ —maxint, —maxint+1, ..., —1, 0, 1, ..., maxint—1, maxint }.
The following operators are defined for the type integer:

+ addition, unary identity

— subtraction, unary negation
div integer division

mod integer remainder

* multiplication

= relational

B.3.2 Char

The range of values for the data type char is at least the upper case letters (A-Z),
the digits (0-9) and the space character, plus any additional characters provided by the
character set underlying the implementation. The values of the data type char are
therefore implementation defined.

The ordinal positions of the characters within the character set are implementation
defined. Within each of the three subsets, A-Z, a-z and 0-9, the characters will be in
alphabetical order but only the digits, 0-9, are guaranteed to be in consecutive ordinal
positions.

The relational operators are the only ones defined for the data type char.

Predefined Identifiers 91

B.3.3 Boolean

The data type Boolean is defined by

type
Boolean = (false, true);

Boolean is a particular case of an enumerated data type. The relational operators =,
<>, <=, >=, <, > and in all yield Boolean values. The if, while, and
repeat-until statements all require Boolean control expressions.

B.3.4 Real
The data type real allows approximations of real (in the mathematical sense)

numbers to be represented, that is, real values may have a fractional part (digits to the
right of the decimal point). The following operators are defined for the data typereal.

+ addition, unary identity

— subtraction, unary negation
* multiplication

/ real division

<>

<

<= relational

>

>=

Real values typically have their precision and magnitude limited by the computer
hardware. See Reference Section G for the limitations on real numbers in Waterloo
microPascal. Since real numbers are approximations one should not rely on the
results of real operations being absolutely correct. Comparisons between real
numbers for strict equality (=) are very likely to produce unexpected results. It is a
safer practice to program in such a way that real comparisons are expressed as <= or
>=,

92 Reference Section B

B.3.5 Text
The data type text is an enhanced version of the type

type
text = file of char;

Variables of type rext are referred to as textfiles and have special features beyond files
of all other types including ordinary files of char.

Textfiles have the property that they may be divided into lines. This page, if
stored in a computer, could be represented conveniently as a textfile.

The following special features are included in Pascal to facilitate the processing of
textfiles:

1) In order that a program can determine where lines end and new lines begin
when reading a textfile, the function eoln(f) is included. It returns true if
the textfile f is at the end of a line and false otherwise.

2 In order that a program can indicate the end of the current line when
writing a textfile, the procedure writeln(f) is included. It writes a
new-line marker on the textfile f.

3 Since only data of the base type of a file may be used in operations to the
file (i.e. assigned to the file buffer variable) textfiles are restricted to
character data. In order to enhance the usefulness of textfiles, the
procedures read and write will convert internal representations of some
data types to character data. This allows values of type integer, Boolean,
string and real to be written out in human-readable format, and also
allows numbers in human-readable format to be read by a Pascal program.

Reference Section B.5.7 describes the standard procedures and functions for file
manipulation.

Predefined Identifiers 93

B.4 Predefined Variables

B.4.1 Standard Input and Output Files

The standard files input and output are external files. The following declaration is
assumed automatically if they are mentioned in the program heading.

var
input, output : text;

They are declared to be local to the main block as distinct from in the conceptual
block enclosing the entire program. This means that the identifiers input and output
cannot be redefined accidentally in the main block. These files are automatically
initialized before program execution is started (i.e. reset(input) and rewrite(output)
are executed) provided they are mentioned in the program heading.

The standard procedures and functions get, read, readin, eof and eoln assume the
standard file input if the optional parameter specifying the file is omitted. The

standard procedures put, write and writeln assume the standard file output if the
optional parameter specifying the file is omitted.

B.5 Predefined Procedures and Functions

B.5.1 Mathematical Functions

sin(x) returns the sine of x radians

cos(x) returns the cosine of x radians
arctan(x) returns the arctangent in radians of x
In(x) returns the natural logarithm of x
exp(x) returns e raised to the power of x
sqrt(x) returns the square root of x

All of the above functions take either an integer or real parameter and always return a
real result.

abs(x) returns the absolute value of x
sqr(x) returns x*x

Both of the above functions take an integer or real parameter and return a result of the
same type as the parameter.

94 Reference Section B

B.5.2 Dynamic Variable Creation Procedures

new(x)
New takes a pointer variable, say x, as a parameter. It creates a variable of the
type to which x is a pointer. The pointer to the new variable is returned in x. If x
points to a variant record then the variable created by new will be capable of
storing any of the variants (except when the following form of new is used).

new(x, tl, 12, ..., tn)
In the case where x points to a record with a variant part, a value for each tag field
may be specified. This extra information may permit the compiler to make some

space-saving optimizations.
The following rules apply:

) New does not assign the tag field values to the tag fields.

@ The values correspond to consecutive tag fields starting with the first
one in the record.

3 Only the values specified in the parameter list to new may be assigned
to the tag fields by the program.

@) The same tag field values must be specified on an activation of dispose
for the variable created by this form of new.

dispose(x)
Dispose takes a pointer value parameter (which was originally returned by new)
for which no dispose has previously been done, and destroys the variable which is
pointed to by the parameter.

dispose(x, tl, 12, ..., tn)

In the case where tag field values were specified to new, the same tag field values
must be specified to dispose.

Predefined Identifiers 95

B.5.3 Real to Integer Conversion Functions
trunc(x)

Trunc takes a real parameter and truncates it to an integer value.
round(x)

Round takes a real parameter and rounds it to the nearest integer value. If the
parameter is zero or positive then round(x) is equivalent to trunc(x + 0.5);
otherwise it is equivalent to trunc(x — 0.5).

If the result of either of the above functions is not in the range of values for the type
integer then an error occurs.

B.5.4 Functions for Ordinal Types
ord(x)

Ord takes an ordinal type parameter and returns an integer value which is the
ordinal position of the parameter value within the set defined by the type of the
parameter.

The ordinal position of the first element in an enumerated type is zero. The
rest of the elements occupy consecutive positions. The ordinal position of an
element of the type integer is the value of the integer. The ordinal positions of the
elements of the type char are implementation defined. The ordinal positions of
the elements of a subrange type are the same as the ordinal positions of the
elements of its base type.

chr(x)

Chr takes an integer parameter and returns a value of type char which is the
character at the ordinal position indicated by the parameter value. If no such
character exists an error occurs. Chr(ord(x)) = x is always true if the character
x is defined.

96 Reference Section B

succ(x)
Succ takes a parameter which is of ordinal type and returns the next element in the
ordered set of values defined by that type. An error occurs when the parameter
value is the last item in the ordered set (i.e. no successor to the parameter value
exists).

pred(x)
Pred takes a parameter which is of ordinal type and returns the previous element
in the ordered set of values defined by that type. An error occurs when the
parameter value is the first item in the ordered set (i.e. no predecessor to the
parameter value exists).

B.5.5 Miscellaneous Functions

odd(n)
Odd takes an integer type parameter and returns zrue if the value of the parameter
is odd and false otherwise.

B.5.6 Data Transfer Procedures

pack(source, offset, dest)

Pack copies data from the parameter source to the parameter dest under the
following rules.

1) Source must be an array which is not packed.
@3] Dest must be an array which is packed.
3) Source and dest must have identical constituent types.

(C)) The number of elements copied is the number of elements in the array
dest.

&) The first element copied is sourceloffser] which is assigned to the first
element of dest.

Predefined Identifiers 97

©

The remaining elements are copied to corresponding consecutive
positions.

unpack(source, dest, offset)

Unpack copies data from the parameter source to the parameter dest under the
following rules.

M
()]
€))
C)

&)

(6)

Source must be an array which is packed.
Dest must be an array which is not packed.
Source and dest must have identical constituent types.

The number of elements copied is the number of elements in the array
source.

The first element copied is the first element in the array source which
is assigned to dest[offset].

The remaining elements are copied to corresponding consecutive
positions.

B.5.7 File Manipulation Procedures and Functions

eof (f)
eof

Eof takes a file variable as a parameter. The parameter may be omitted, in which
case the standard file input is assumed. An error occurs if the file variable was not
initialized by an activation of procedure reset or rewrite.

Eof(f) returns true if the file f is positioned at the end-of-file (past the last
element) and false otherwise. When eof(f) is true, f1 is undefined.

A file f may be written (i.e. an activation of procedure put(f)) only when eof (f)
is true. A file f may be read (i.e. an activation of procedure get(f)) only when

eof (f) is false.

98 Reference Section B

eoln(f)

eoln

Eoln takes a file variable as a parameter. The file must be a textfile. The
parameter may be omitted, in which case the standard file inpur is assumed. An
error occurs if the file variable was not initialized by an activation of procedure
reset.

Eoln(f) returns true if the textfile f is positioned at the end of the current line, and
returns false otherwise. When eoln(f) is true the value of f1 is a space. Eof(f)
and eoln(f) will never be true at the same time.

get(f)
get

Get takes a file variable as a parameter. The parameter may be omitted, in which
case the standard file input is assumed. An error occurs if the file variable was not
initialized with an activation of procedure reser.

If eof (f) is true prior to the activation of get(f) then an error occurs. Otherwise,
the current position of the file is advanced to the next element and f1 receives the
value of the new current element. If no next element exists (i.e. end-of-file is
encountered) then eof(f) becomes true and the value of f1 is undefined. If f is a
textfile and the new current element is a new-line marker then eoln(f) becomes
true and the value of f1 is a space.

put(f)
put

Put takes a file variable as a parameter. The parameter may be omitted, in which
case the standard file output is assumed. An error occurs if the file variable was

not initialized by an activation of procedure rewrite. An error occurs if eof(f) is
not true.

The value of the file buffer variable 1 is appended to the filef, and the value of /1
becomes undefined.

Predefined Identifiers 99

reset(f)

Reset takes a file variable as a parameter and initializes the file for reading. The
file is positioned at the beginning and an initial ger(f) is performed. After
executing reset(f) the buffer variable f1 contains the value of the first element of
the file. If the file is empty then the value of f1 is undefined and eof(f) is true.

rewrite(f)

Rewrite takes a file variable as a parameter and initializes the file for writing. All
the elements are deleted and the file is then empty. Eof(f) becomes true and the
value of f1 is undefined.

read(f, v)
read(v)

This form of read takes an optional file variable parameter and one data variable
parameter. Forms of read which take several data variable parameters are
subsequently defined in terms of this form. If the file variable is omitted then the
standard file input is assumed. If the file variable was not initialized by an
activation of reset then an error occurs. If eof(f) is true prior to the execution of
read then an error occurs.

If £ is not a textfile then read(f, v) is equivalent to

begin
v:=f1
ger(f)
end

If f is a textfile and v is of type char then the above definition also applies.

If f is a textfile and v is of type integer or real, then characters forming a number
according to the syntax of Pascal are collected (after starting at the current
character and skipping blanks and new-line characters). If a number is found and
is of a type which is assignment compatible with v then the value of the number is
assigned to v. The value of f{ is the character immediately after the last character
in the number which was found. If no number was found because end-of-file was
encountered then eof(f) becomes true and the value of f1 is undefined. If no
number was found and end-of-file was not encountered then an error occurs.

100 Reference Section B

read(f, vl, v2, ..., vn)

When the first parameter to read is a file variable then this form of read is
equivalent to

begin
read(f, vl);
read(f, v2),

read(f, vn),;
end

read(vl, v2, ..., vn)

When the first parameter to read is not a file variable then this form of read is
equivalent to

begin
read(input, vl);
read(input, v2);

read(input, vn);
end

readin(f)
readin

This form of readln takes a file variable as a parameter. The file must be of type
text. The parameter may be omitted in which case the standard file input is
assumed. Readln(f) is equivalent to

begin
while not eoln(f) do
get(f)
get(f)

end

Predefined Identifiers 101

readin(f, vl, v2, ..., vn)

When the first parameter to readin is a file variable then this form of readin is
equivalent to

begin
read(f, vi, v2, ..., vn);
readin(f);

end

readin(vl, v2, ..., vn)

When the first parameter to readln is not a file variable then this form of readin is
equivalent to

begin
read(input, vi, v2, ..., vn);
readin(input);

end

write(f, v)
write(v)

This form of write takes an optional file variable parameter and one data value
parameter. Forms of write which take several data value parameters are
subsequently defined in terms of this form. The file variable may be omitted in
which case the standard file output is assumed. If the file variable was not
initialized with a call to rewrite or if eof(f) is not true then an error occurs.

If f is not a textfile then write(f, v) is equivalent to

begin
fTi=v
put(f)
end

If f is a textfile and v is a real, integer, Boolean, char or packed array of char
variable, a sequence of characters representing the data is constructed and put on
the textfile.

102 Reference Section B

If f is a textfile then the data value parameter may have afield-width specifier and
be of the form

v:wl
or v:wl:w2

For example:
write(a :2, b :2 :4);

The field-width specifiers, wl and w2, may not be specified unless f is a textfile.
Field-width specifiers may be used with all forms of write and writeln.

The field-width specifier wl, may be used with all types of parameters; it is used
to indicate the number of characters to be written. Both field width specifiers wi
and w2 may be specified only with real parameters, in which case wl indicates
the total number of characters to be written and w2 indicates the number of digits
to the right of the decimal point. If either wl or w2 are negative then an error
cccurs.

The formats of the sequences of characters for the various types of data are given
as follows:

char

minimum field width: 1

default field width: 1

format: The character is right-justified with blanks to the left to generate a
field with the required width.

Boolean

minimum field width: 1

default field width: 5

format: The string "TRUE" or "FALSE’, as indicated, is written. If the field
width is 5 or greater then the string is right-justified within the field with
blanks to the left. If the field width, wi, is 4 or fewer then the first wl
characters of the string are written.

Predefined Identifiers 103

packed array of char

minimum field width: 1

default field width: length of string

format: If the field width is greater than the length of the string then the string
is written right-justified in the field with blanks to the left. If the field width,
wl, is less than or equal to the length of the string then the first wl characters
in the string are written.

integer
minimum field width: 2
default field width: implementation defined
format: The value is represented with no leading zeroes and a minus sign to its
immediate left if the quantity is negative. If the resulting string will not fit in
the field then the field is expanded to the size of the string. Otherwise the
resulting string is right-justified in the field with blanks to the left.
real (without w2 specified)
minimum field width: implementation defined
default field width: implementation defined
format: The quantity is formatted in exponential notation which consists of:
I a minus sign (—) if the quantity is negative, otherwise a space,
2) one digit,
3 a decimal point (.),
G} as many digits as the field width will permit (at least one),
(5) an ”e”,

(6) the sign (+,~) of the exponent,

) an implementation dependent number of digits of exponent.

104 Reference Section B

real (with w2 specified)

minimum field width: 4
default field width: implementation defined
format: The quantity is formatted in fixed-point format which consists of:

) as many blanks as required to right-justify the remainder of the
representation of the number in the field,

2 the digits required to the left of the decimal point; with the first
character a minus sign (—) if the quantity is negative,

3) a decimal point (.),

“@) w2 digits.
When the representation of a real or integer quantity will not fit in the field width
specified by wl the field will automatically be expanded. When real numbers are

to be formatted in fixed-point representation, the field will be expanded if
necessary to allow w2 digits to the right of the decimal point.

write(f, vl, v2, ..., vn)

When the first parameter to write is a file variable then this form of write is
equivalent to

begin
write(f, vl);
write(f, v2');

write(f, vn);
end

Predefined Identifiers 105

write(vl, v2, ..., vn)

When the first parameter to write is not a file variable then this form of write is
equivalent to

begin
write(output, vl);
write(output, v2);

write(output, vn);
end

writeln(f)
writeln

This form of writeln takes a file variable as a parameter. The file must be of type
text. The file may be omitted in which case the standard file output is assumed. If

the file f has not been initialized by an activation of procedure rewrite or if eof (f)
is not true then an error occurs.

Writeln(f) indicates that the current line on textfile f should be ended.
Conceptually, a new-line marker is written on the file.

writeln(f, vl, v2, ..., vn)

When the first parameter to writeln is a file variable then this form of writeln is
equivalent to

begin
write(f, v, v2, ..., vn);
writeln(f);

end

106 Reference Section B

writeln(vl, v2, ..., vn)

When the first parameter to writeln is not a file variable then this form of writeln
is equivalent to

begin
write(output, vl, v2, ..., vn);
writeln(output);

end

page(f)
page

Page takes a file variable as a parameter. The file must be of type fext. The
parameter may be omitted in which case the standard file output is assumed. If the

file f has not been initialized by an activation of procedure rewrite or if eof(f) is
not true then an error occurs.

Page indicates that the next line of textfile f should begin at the top of a new
page, if the representation of the textfile permits this.

107

Reference Section C

Reserved Words

The following words have special meaning in Pascal and may not be used as

identifiers.

and
array
begin
case
const
div

do
downto
else
end

file

for
function
goto

if

in
label
mod

nil

not

of

or
packed
procedure
program
record
repeat
set

then

to

type
until

var
while
with

Notes

109

Reference Section D

Delimiters

The following delimiters are symbols used in the Pascal language. Alternate
representations are shown to the right of the preferred representation. They will be
recognized on systems where the preferred representation is unavailable. (Waterloo
microPascal recognizes alternate representations for { and } only.)

EQ
NE
LT
LE
GT
GE

\

It

e \"/V/\/\/\ll*l+

-
-

S
*
A

Notes

111

Reference Section E

Summary of Operators

The following table summarizes the operators of Pascal.

symbol operation
1= assignment
+ identity
addition
setunion

operand types

left right
ordinal ordinal
real real
real integer
array array
string string
record record
set set
pointer pointer
none integer
none real
real real
real integer
integer real
integer integer
set set

result type

none
none
none
none
none
none
none
none

integer
real

real
real
real
integer

set

112

symbol

div

mod

operation

negation

subtraction

set

difference

multi-
plication

set
intersection

real

division

integer

division

integer
remainder

operand types

left

none
none

real
real
integer
integer

set

real
real
integer
integer

set

real
real
integer
integer

integer

integer

right

integer
real

real
integer
real
integer

set

real
integer
real
integer

set

real
integer
real
integer

integer

integer

Reference Section E

result type

integer
real

real
real
real
integer

set

real
real
real
integer

set

real
real
real
real

integer

integer

Summary of Operators

symbol

and

or

not

<>

operation

Boolean and

Boolean or

Boolean not

equality

inequality

lessor
equal

set
inclusion

operand types

left

Boolean

Boolean

none

ordinal
real
real
integer
pointer
string
set

ordinal
real
real
integer
pointer
string
set

ordinal
real
real
integer
string

set

right

Boolean

Boolean

Boolean

ordinal
real
integer
real
pointer
string
set

ordinal
real
integer
real
pointer
string
set

ordinal
real
integer
real
string

set

113

result type

Boolean

Boolean

Boolean

Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean

Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean

Boolean
Boolean
Boolean
Boolean
Boolean

Boolean

114

symbol

in

operation

greateror
equal

set
inclusion

less

greater

set
membership

operand types

left

ordinal
real
real
integer
string

set

ordinal
real
real
integer
string

ordinal
real
real
integer
string

ordinal

right

ordinal
real
integer
real
string

set

ordinal
real
integer
real
string

ordinal
real
integer
real
string

set

Reference Section E

result type

Boolean
Boolean
Boolean
Boolean
Boolean

Boolean

Boolean
Boolean
Boolean
Boolean
Boolean

Boolean
Boolean
Boolean
Boolean
Boolean

Boolean

115

Reference Section F
Syntax Summary

F.1 Notation

The following notation is used in the syntax definition of Pascal.

{abc) abc is optional
{abc}" abc may be repeated 0 or more times
{abc}! abc must be repeated 1 or more times
abc | def choose abc or def
abc

or def choose abc or def
abc abc is a keyword

The item being defined will be shown in italics and the definition of the item will
follow, beginning on the next line and indented. The style of definition is based on a
modification of Backus-Naur form.

116

F.2 Basics

digit
neyr I lllll | 1oy I | "9"

letter

n_n mrn n_n "_n
a b c"1... | v

or AN | IIBII I "C" | . ‘ nog

number
{digit}*(.{digit}!){exponent)

exponent

e(+ | —){digit}!
id

letter{letter l digit}?

string
'{any character}!’

Reference Section F

Syntax Summary

F.3 Programs and Blocks

program
program-heading;
block

program-heading
program program-name {program-parameter-list)

program-name
id

program-parameter-list
(id-list)

id-list
id {, id}°

block
declarations
begin
{statement;}°
statement
end

F.4 Declarations and Scope

declarations
(label-declarations)
{constant-declarations)
{type-declarations)
(variable-declarations)
{procedure-and-function-declarations)

117

118

F.4.1 Labels

label-declarations
label
label {, label}9;

label
{digit}!

F.4.2 Constants

constant-declarations
const
{id = constant;}!

constant

{+|—) number
or (+{—)id
or string

F.4.3 Types

type-declarations
type
{id = type;}!

type
type-id
or enumerated-type
or subrange-type
or (packed) array-type
or (packed) set-type
or (packed) file-type
or pointer-type
or (packed) record-type

Reference Section F

Syntax Summary 119

F.4.3.1 Simple Types

type-id
id

enumerated-type
(id-list)

subrange-type

constant .. constant

F.4.3.2 Arrays

array-type
array [index-type {, index-type}°] of type

index-type

type-id
or enumerated-type
or subrange-type

F.4.3.3 Sets

set-type
set of enumerated-type
set of subrange-type
set of type-id

F.4.3.4 Files

file-type
file of type

F.4.3.5 Pointers

pointer-type
1 type-id

120

F.4.3.6 Records

record-type
record
field-list
end

field-list

fixed-fields (;)
or fixed-fields; variant-part {;)
or variant-part (;)

fixedfields
{id-list : type;}°
(id-list : type)

variant-part
case (tag-name :) tag-type of
{variant;}?
(variant)

tag-name
id
lag-type
type-id

variant
variant-label-list : (field-list)

variant-label-list
constant {, constant}°

F.4.4 Variables

variable-declarations
var
{id-list : type;}!

Reference Section F

Syntax Summary 121

F.4.5 Procedures and Functions

procedure-and-function-declarations
{procedure-or-function-declaration}!

procedure-or-function-declaration
procedure-heading;
body;
or function-heading;
body;

procedure-heading
procedure id (formal-parameters)

Sfunction-heading
function id ((formal-parameters) : type-id)

body
block
or directive

directive
id

F.4.5.1 Formal Parameters

formal-parameters
(parameter-group {; parameter-group}°)

parameter-group

id-list : type-id
or var id-list : type-id
or procedure-heading
or function-heading

122

F.5 Executable Statements

statement

(label :)

Reference Section F

(unlabelled-statement)

unlabelled-statement

or
or
or

procedure-invocation
assignment-statement
control-statement

compound-statement

compound-statement

begin
{statement; }°
statement
end

F.5.1 Procedure Invocation and Parameters

procedure-invocation

or

procedure-id

procedure-id (actual-parameter {, actual-parameter}?)

actual-parameter

or
or
or
or

procedure-id
function-id
variable
expression
write-parameters

procedure-id

id

Junction-id

id

write-parameters

expression { (: expression)

: expression)

Syntax Summary 123

F.5.2 Assignment Statement (Variables and Expressions)

assignment-statement
var := expression

F.5.2.1 Variables

variable
id
or subscripted-variable
or variable-with-field-selection
or indirectly-referenced-variable

subscripted-variable
variable [expression {, expression}?]

variable-with-field-selection
variable . field-name

field-name
id

indirectly-referenced-variable
variable 1

124

F.5.2.2 Expressions and Operators

expression
simple-expr

or simple-expr relational-operator simple-expr

relational-operator

or <>
or <
or <=
or >
or >=
or in

simple-expr
(+]|-) term
or simple-expr adding-operator term

adding-operator

+
or -
o or
term

factor

or term multiplying-operator factor

multiplying-operator

E
or [/

or div
or mod

or and

Reference Section F

Syntax Summary 125

F.5.2.3 Expression Factors

Jactor
variable
or number
or string
or constant-id
or il

or (expression)

or set-constructor

or not factor

or function-invocation

constant-id

id
set-constructor

[1]
or [set-item {, set-item}]
set-item

expression

or expression .. expression

function-invocation
function-id
or function-id (actual-parameter {, actual-parameter}®)

F.5.3 Control Statements

control-statement
if-statement

or case-statement

or while-statement

or repeat-statement

or for-statement

or with-statement

or goto-statement

126

F.5.3.1 IF Statement

if-statement
if control-expression then
statement
or if control-expression then
statement
else
statement

control-expression
expression

F.5.3.2 CASE Statement

case-statement
case selector-expression of
{case-label-list : statement;}°
(case-label-list : statement)
end

selector-expression
expression

case-label-list
constant {, constant}?

F.5.3.3 WHILE Statement

while-statement
while control-expression do
statement

F.5.3.4 REPEAT Statement

repeat-statement
repeat
{statement; }9
statement
nntil control-expression

Reference Section F

Syntax Summary

F.5.3.5 FOR Statement

for-statement
for control-variable :
statement
or for control-variable :
statement

control-variable
id

initial-value
expression

JSinal-value
expression
F.5.3.6 WITH Statement
with-statement
with var {, var}° do
statement

F.5.3.7 GOTO Statement

goto-statement
goto label

initial-value to final-value do

initial-value downto final-value do

127

Notes

129

Reference Section G

Waterloo microPascal Users Guide

G.1 Introduction

This section addresses issues specific to Waterloo microPascal and also contains
the hardware dependent specifications.

G.2 Run-time Error Detection in Waterloo microPascal

Waterloo microPascal is designed to provide useful diagnostic information in the
case of run-time errors. The classes of run-time errors that Waterloo microPascal
detects are:

attempts to use a variable that has not been assigned a value,

attempts to assign a value that is outside the declared range of a variable,
array subscripting errors,

atternpts to use a nil pointer, or to use previously "disposed” memory,
dynamic storage resources exhausted,

run-stack overflow (for example, infinite recursion),

control statement semantics: branching into an inactive for or with statement; no
case match in a case statement.

In the case of any run-time error, Waterloo microPascal displays:

the name of the variable involved (if any),

the source-file line where execution was taking place when the error occurred,

130 Reference Section G

G.3 Language Supported By Waterloo microPascal

Unlike most other programming languages there is no official standard for Pascal.
The Pascal User Manual and Report, Second Edition (Kathleen Jensen and Niklaus
Wirth, Springer-Verlag, New York, 1974, ISBN 0-387-90144-2) was the original
definition of the Pascal language. An international standardization effort is now
underway. In the absence of such a standard, Waterloo microPascal is an
implementation of the language described herein, which is based on the draft
proposals produced by the Pascal standardization effort. The language is very close to
what is described by Jensen and Wirth.

G.4 Implementation Defined Attributes
(a) Maxint is defined to be 32,767 (that is, 2**16—1).

(b) The largest real value is approximately 1.7¢+38.

© The smallest positive real value (machine epsilon) is approximately
2.9e—-39.

(d) The data type char is defined to be all 128 ASCII character codes. This
includes all upper and lower case letters, and all special characters.

(e) Sets may have a maximum of 256 elements. The ordinal values of the
elements must be in the range 0..255.

® The default field widths used by procedures write and writeln are 7, 5, and
15 for integer, Boolean and real, respectively.

(2) The default number of decimal places displayed by write or writeln for a
floating-point number (exponential notation) is 8.
G.5 Implementation Dependent Attributes

(@) The only procedure directive in Waterloo microPascal is the forward
directive (in particular, there is no external directive).

(b) There are some additional standard functions/procedures (see Reference
Sections G.10 and G.11)

Waterloo microPascal Users Guide 131

©

@

)

®

€9)

(h)
M
)
&)

Attempting to write onto a file that was "opened” for reading will result in
a run-time error.

The operands of a binary operator are evaluated left-to-right so that in the
following expression, the left-oprnd-expression is evaluated first:

left-oprnd-exprn operator right-oprnd-exprn

Boolean expressions are always evaluated completely (there is no partial
expression evaluation optimization).

The order of evaluation and binding of function and procedure actual
parameters is strictly left-to-right.

The effect of resetting or rewriting a standard file is the same as for any
other file.

Data items of the type char are stored in one byte.
Integer, enumerated types, and subrange types are stored in two bytes.
Data items of the type real are stored in five bytes.

Declaring a structured type to be packed has no effect on the internal
representation.

G.6 File I/O Considerations

Waterloo microPascal allows a more general form of the standard functions reset
and rewrite. For example,

reset(x, 'testdata’)

would open the file named "testdata” for input. It is also possible to use

reset(x, filename)

where filename is a packed array of char containing a filename.

132 Reference Section G

G.7 Character-set Extensions
Because some of the special characters used in the Pascal language may not be
available on some 1/O devices, Waterloo microPascal recognizes the following
escape sequences:
(* left brace bracket ({)
*) right brace bracket (})
G.8 Miscellaneous Considerations

Identifiers and keywords are case-insensitive (that is, A =a always yields true).

Waterloo microPascal should not be used with source files that have a record
length greater than 128 bytes.

Sequence numbers are not part of the Pascal language; thus, Waterloo
microPascal will not accept programs that have them.
G.9 Restrictions

In order to ensure the security of the run-time environment of Waterloo
microPascal (that is, to allow complete run-time semantic checking), the restriction
that file types may not contain file types or pointer types is enforced.

The semantics of variant records are not checked at execution time.

Pack and unpack are not implemented.

Passing procedure or function names as parameters is not supported.

G.10 The Interactive Debugger
An integral part of Waterloo microPascal is an interactive debugger. It may be
used to trace program execution, temporarily suspend program execution and

examine and/or change program variables.

The debugger is invoked when:

Waterloo microPascal Users Guide 133

(n the break key is hit,

) the standard procedure pause is executed, or

3) a run-time error is detected.

When the debugger is invoked, microPascal displays the source line at which the
program was executing, and prompts for a command. The user may proceed either by
pressing "return”, which simply continues as if the debugger had not been invoked, or
may enter a debugger command. These commands are described in the next section.

Debugger Commands

All debugger commands are represented by a single character.

Quit

Syntax:

Description:

Continue

Syntax:

Description:

Execute

Syntax:

Description:

q

The quit command terminates execution and returns the user to the
editor.

The continue command terminates the debugger, and resumes
execution of the program at the point where the debugger was
invoked.

e <statement>

The given statement is executed. It may be any Pascal statement
that is legal in the current scope context. In particular, “writeln”
may be used to examine the contents of variables, and assignment
statements may be used to change values.

134

Single-step
Syntax:

Description:

Where-am-1?
Syntax:

Description:

Reference Section G

S

The single-step command places microPascal in a state such that
each source statement is displayed, but not executed until the
"return” key is pressed. This allows the user to trace the execution
of a program. Single-step mode may be terminated either by
allowing the program to end normally, or by entering another
debugger command. If a run-time error occurs while in single-step
mode, the debugger is invoked as usual.

w

The “"where-am-1?" command simply reviews what state
microPascal is in (i.e single-stepping, break’ed, etc.), and displays
the source line where the program is currently executing.

G.11 Peek and Poke

peek(address)

The peek function takes an integer parameter and returns an
integer value which is the contents of the byte specified by the
parameter.

poke(address, value)

The poke procedure takes two integer parameters. The value of the
second parameter is stored in the byte at the address specified by
the first parameter. The first byte of screen memory is at address
32768.

Index

activation
function, 76
procedure, 64
addition, 72
and operator, 72
arctan, 93
array
declaration, 52
packed, 47, 49, 53
use, 66
assignment, 64

block, 44
Boolean, 91

case statement, 81
char, 90

chr, 95

comment, 43
compatible types, 50
compound statement, 63
constant, 47

control statements, 77
cos, 93

declarations, 45

delimiter, 43, 109

dispose, 94

div operator, 72

division, 72

dynamically created variable, 67

else, 78

end of line, 98
end-of-file, 97
enumerated type, 51
eof, 97

eoln, 98
executable statements, 62
exp, 93
expression, 69
external file, 54
external files, 44

135

field selection, 67
field-width specifier, 101
file
buffer variable, 68
declaration, 54
external, 54
internal, 54
of char, 92
use, 68
files
external, 44
for statement, 84
formal parameters, 60
format, 101
forward declaration, 59
function
activation, 76
definition, 58
heading, 59
invocation, 76

get, 98
global, 45
goto statement, 88

id, 43
identical types, 49
identifier, 43
if statement, 78
implementation
defined attributes, 130
dependent attributes, 130
input, 93
integer, 90
internal file, 54
invocation
function, 76
procedure, 64

136

keyword, 43, 107

label
declarations, 46
definition, 62

In, 93
local, 45
maxint, 89

mod operator, 72
multiplication, 72

new, 94

nil, 75

null statement, 62
number, 43

odd, 96

operator, 69, 111

or operator, 72

ord, 95

ordinal type, 49

output, 93
formatted, 101

pack, 96
packed, 48
array, 47,49, 53
page, 106
parameter
actual, 64
address, 61
formal, 60

functional, 61
procedural, 61
reference, 61
value, 61
var, 61
pointer
declaration, 55
use, 67
powerset, 54
pred, 96

Index

procedure
declaration, 58
heading, 59
invocation, 64
program heading, 45
put, 98

read, 99
readln, 100
record

declaration, 56

use, 67

variant, 57
relational

operators, 71
remainder operator, 72
repeat statement, 83
reset, 99, 131
rewrite, 99, 131

round, 95
scope, 45
set

declaration, 53
difference, 72
inclusion, 71
intersection, 72
membership, 71
union, 72
sin, 93
sqrt, 93
standard files, 45, 93
statement
case, 81
compound, 63
control, 77
for, 84
goto, 88
if, 78
null, 62
repeat, 83
while, 82
with, 87

Index

string type, 49
subrange type, 52
subscripting, 66
subtraction, 72

succ, 96
tag

name, 57

type, 57
textfiles, 92
tokens, 43
trunc, 95
type

array, 52

Boolean, 91

char, 90

compatible, 50
declarations, 48
enumerated, 51
file, 54

identical, 49
integer, 90
pointer, 55
set, 53
string, 49
subrange, 52
text, 92

unpack, 96

variable
declaration, 58
dynamically created, 67
use, 65

variant record, 57

while statement, 82
with statement, 87
write, 101
writeln, 105

137

Commodore Magazine

This bi-monthly magazine, published by Commodore, provides a vehicle for sharing the
latest product information on Commodore systems, programming techniques, hardware
interfacing, and applications for the CBM, PET, SuperPET, and VIC Systems. Each issue
contains user application features, columns by leading experts, the latest news on user
clubs, a question/answer hotline column, and reviews of the latest books and software.

The subscription fee is $15.00 for six issues per year within the U.S. and its possessions,
and $25.00 for Canada and Mexico. Make checks payable to COMMODORE BUSINESS
MACHINES, and send to:

Editor, Commodore Magazine
Commodore Business Machines, inc.
681 Moore Road

King of Prussia, PA 19406

The Transactor

The Transactor, which is a monthly publication of Commodore-Canada, is primarily a
technical periodical, containing pertinent hardware and software information for the
CBM, PET, VIC, and SuperPET systems. Each issue features product reviews, hardware
and software evaluations, and programming tips from the finest technical experts on
Commodore products. Additionally, The Transactor contains general information such
as product updates and trade show reports.

The subscription fee is $10.00 for six issues within Canada and the United States, and
$13.00 for all foreign countries. Make checks payable to COMMODORE BUSINESS
MACHINES, INC. and send to:

Editor, The Transactor
Commodore Business Machines, inc.
3370 Pharmacy Avenue
Agincourt, Ontario, Canada M1W 2K4

Waterloo microPascal is an interpretive implementation of the
Pascal language. It is accomplished by Waterloo microEdit—a full-
screen text editor. This manual assumes familiarity with microEdit.

This document consists of two sections: a tutorial introduction and a
reference manual. The tutorial introduction introduces the features
of the Pascal language by a series of simple examples accompanied
by notes. The reference manual defines the Pascal language and also
explains specific features of Waterloo microPascal.

Language Supported
The Waterloo microPascal implementation corresponds closely to
Pascal User Manual and Report, Second Edition (Springer-Verlag,
1974) and the interim draft standards being produced by the
international standardization effort.
Enhancements and Features
B An interactive debugger allows single-step operation, break-
points and interactive examination of variables at execution-
time
B Peek and poke procedures allow direct access to the user
memory, including the screen

B Reset and rewrite allow the specification of an actual filename
as their second parameter

@ Lazyl/Oisa feature permitting keyboard and screen 1/ O to
behave in an intuitive way for interactive programs

DISTRIBUTED BY
Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

$10.95/21905 ISBN: 0-672-21905-0

